首页> 外文期刊>ATW >PARCS-Subchanflow-TRANSURANUS Multiphysics Coupling for High Fidelity PWR Reactor Core Simulation: Preliminary Results
【24h】

PARCS-Subchanflow-TRANSURANUS Multiphysics Coupling for High Fidelity PWR Reactor Core Simulation: Preliminary Results

机译:用于高保真压水堆堆芯仿真的PARCS-Subchanflow-TRANSURANUS多物理场耦合:初步结果

获取原文
获取原文并翻译 | 示例
           

摘要

Traditionally, reactor core simulators use simplified models to predict the fuel temperature and thermal-hydraulic conditions in the core. To achieve better accuracy detailed models should be used to describe all different physical processes (Multiphysics approach). Simplified solvers for the fuel temperature don't capture the material behavior under irradiation such as, swelling, cracking, pellet-clad interaction, etc. These phenomena affect properties such as fuel thermal conductivity, the fuel rod gap conductance which has an impact in the calculation of the fuel temperature. It is known that the gap conductance during reactor lifetime, depends strongly on the irradiation and power history as shown for instance in [Bielen 2015] thermal-hydraulic, and fuel thermo-mechanical behavior of the core components. Typically in current generation reactor physics analysis these three component areas are given separate consideration or are at best loosely coupled. Within this work, a methodology for tightly coupling the core neutronics code PARCS, thermal-hydraulics code PATHS, and fuel rod simulator code FRAPCON was developed. This coupled code package, referred to as FRAPARCS, was applied to two fuel depletion problems: a pin cell and a 5x5 assembly mini-core. The results of the depletion calculations indicate that standalone PARCS does not adequately capture the evolution of fuel rod behavior which influences the Doppler fuel temperature used in cross section evaluation, and as a result significant differences in computed core performance can be seen. In particular, the behavior of the fuel-cladding gap and associated temperature drop was found to be important. FRAPARCS was then applied to the pin cell calculation to evaluate the uncertainty and sensitivity of the nuclear performance of the core due to the influence of fuel thermo-mechanical models available for manipulation in FRAPCON. A sensitivity study was conducted to determine which fuel models were influential on the neutronics outputs; we determined that fuel thermal conductivity, fuel thermal expansion, cladding creep, and fuel swelling had an important influence on the core Doppler temperature and reactivity. Additionally, the heat transfer coefficient was found to be important. Then, FRAPARCS was integrated within the DAKOTA uncertainty package. Two varieties of sampling-based methods (Random and Latin Hypercube Sampling). There are only few publications about mutiphysics simulations in the area of fuel behavior studies [e.g. Magedanz et al. 2015; Hales et al. 2014] and, even less containing studies of reactor core simulations [Holt et al. 2016; Holt et al 2014].
机译:传统上,反应堆堆芯模拟器使用简化的模型来预测堆芯中的燃料温度和热工条件。为了获得更高的准确性,应使用详细的模型来描述所有不同的物理过程(多物理场方法)。简化的燃料温度求解器无法捕获辐射下的材料行为,例如溶胀,破裂,颗粒-包层相互作用等。这些现象会影响燃料的导热性,燃料棒间隙电导率等特性,从而影响燃料的导热性。计算燃油温度。众所周知,反应堆寿命期间的间隙电导在很大程度上取决于辐照和功率历史,例如在[Bielen 2015]热工液压和核心部件的燃料热机械行为中显示。通常,在当代反应堆物理分析中,这三个组成部分被分开考虑或充其量是松耦合的。在这项工作中,开发了紧密耦合核心中子学代码PARCS,热工液压代码PATHS和燃料棒模拟器代码FRAPCON的方法。这种耦合的代码包(称为FRAPARCS)被应用于两个燃料消耗问题:针脚电池和5x5组件微型核。耗竭计算的结果表明,独立的PARCS不能充分捕获燃料棒性能的变化,这会影响截面评估中使用的多普勒燃料温度,因此,可以看出计算出的堆芯性能存在显着差异。特别地,发现燃料包壳间隙的行为和相关的温度下降是重要的。然后,将FRAPARCS应用于销钉电池计算,以评估由于可在FRAPCON中使用的燃料热机械模型的影响而导致的堆芯核性能的不确定性和敏感性。进行了敏感性研究,以确定哪些燃料模型对中子学输出有影响;我们确定燃料导热系数,燃料热膨胀,包层蠕变和燃料膨胀对核心多普勒温度和反应性具有重要影响。另外,发现传热系数很重要。然后,将FRAPARCS集成到DAKOTA不确定性程序包中。两种基于采样的方法(随机和拉丁超立方体采样)。在燃料行为研究领域,关于多物理场模拟的出版物很少。 Magedanz等。 2015; Hales等。 2014],甚至更少包含对堆芯模拟的研究[Holt等。 2016; Holt等,2014年]。

著录项

  • 来源
    《ATW》 |2019年第5期|275-279|共5页
  • 作者单位

    Karlsruhe Institute of Technology Institute of Neutron Physics and Reactor Technology Herman-vom-Helmholtz-Platz-1 76344 Eggenstein-Leopoldshafen Germany;

    Karlsruhe Institute of Technology Institute of Neutron Physics and Reactor Technology Herman-vom-Helmholtz-Platz-1 76344 Eggenstein-Leopoldshafen Germany;

    Karlsruhe Institute of Technology Institute of Neutron Physics and Reactor Technology Herman-vom-Helmholtz-Platz-1 76344 Eggenstein-Leopoldshafen Germany;

    Technische Universität MünchenLehrstuhl für NukleartechnikBoltzmannstraße 15 85747 Garching bei MünchenGermany;

  • 收录信息 美国《科学引文索引》(SCI);
  • 原文格式 PDF
  • 正文语种 ger
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号