...
首页> 外文期刊>Atmospheric environment >Hygroscopic growth of aerosol particles consisted of oxalic acid and its internal mixture with ammonium sulfate for the relative humidity ranging from 80% to 99.5%
【24h】

Hygroscopic growth of aerosol particles consisted of oxalic acid and its internal mixture with ammonium sulfate for the relative humidity ranging from 80% to 99.5%

机译:气溶胶颗粒的吸湿生长由草酸及其内部混合物组成,其硫酸铵用于相对湿度范围为80%至99.5%

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The hygroscopicity of atmospheric aerosol particles plays an important role in their effects on the environment and the public health. Oxalic acid (OA) has been recognized as the dominant dicarboxylic acid in the urban and the remote aerosol particles, so a number of studies have investigated the hygroscopicity of aerosols consisted of pure OA and its mixture with inorganic salt. However, few experimental studies have focused on the hygroscopicity of nanoscale particles at high relative humidity (RH) below saturation of water vapor (i.e., RH = 90?100%) due to the limitation of traditional measuring instruments. In this work, the hygroscopic growth factor (GF) of the aerosol particles composed of pure OA and internally mixed OA-ammonium sulfate (AS) at RH = 80?99.5% were studied using a high humidity tandem differential mobility analyzer (HHTDMA). The experimental results were used to verify the applicability of models including the ideal solution model, the extended aerosol inorganics model (E-AIM) combining with the revised universal quasi-chemical functional group activity coefficients (UNIFAC-Peng) model, the Aerosol Inorganic?Organic Mixtures Functional groups Activity Coefficients (AIOMFAC) model and the Zdanovskii?Stokes?Robinson (ZSR) model. According to the experimental results, the effect of RH, the composition and the initial dry particle diameter (D0) on the hygroscopic growthfactor (GF) and the effective hygroscopicity parameter (lc) of particles at RH = 80?99.5% were analyzed in details. It has been found that for pure OA particles with D0 = 80/100 nm, the prediction of the UNIFAC-Peng model and the AIOMFAC model becomes more accurate than the ideal solution model with the increasing of RH, while all models cannot describe the GF of smaller particles at RH = 80?99.5%. For mixed OA-AS aerosol particles, the chemical reaction is an important reason for the discrepancies between the HHTDMA results and the model prediction. For the pure OA aerosol particles at RH 96% and particles containing AS at RH 99.5%, the sensitivity of GF to D0 is positively and negatively correlated with RH and D0, respectively. However, for all aerosol types in this study, the sensitivity of GF to RH is positively correlated with both D0 and RH. In addition, the lc based on the measurement is clearly dependent on D0 (at RH = 95?99.5%), RH and the particle composition (at RH = 80?99.5%). The measured hygroscopicity of aerosol particles at high RH might be useful in addressing challenges in solving the discrepancies between the lc measured under subsaturated and supersaturated
机译:大气气溶胶颗粒的吸湿性在对环境和公共卫生的影响中起着重要作用。已经公认为城市和远程气溶胶颗粒中的主要二羧酸(OA),因此研究了许多研究研究了气溶胶的吸湿性由纯OA和其与无机盐的混合物组成。然而,由于传统测量仪器的限制,很少有实验研究以低于水蒸气(即,RH = 90〜100%)的高相对湿度(RH)在低相对湿度(RH)下的纳米级粒子的吸湿性。在这项工作中,使用高湿度串联差动迁移率分析仪(HHTDMA)研究了由RH = 80〜99%的纯OA和内部混合的OA-硫酸铵(AS)的气溶胶颗粒的吸湿生长因子(GF)。实验结果用于验证包括理想解决方案模型的模型的适用性,扩展气溶胶无机模型(E-AIM)与修订后的通用准化学官能团活动系数(UNIFAC-PENG)模型相结合,气溶胶无机?有机混合物官能团活性系数(AIOMFAC)模型和Zdanovskii?Stokes?罗宾逊(ZSR)模型。根据实验结果,详细分析了RH,初始干燥粒径(GF)对吸湿生长物(GF)和颗粒的有效吸湿性参数(LC)的影响。99.5% 。已经发现,对于具有D0 = 80/100nm的纯OA颗粒,Unifac-Peng模型的预测和AIOMFAC模型的预测比Rh的增加比理想的解决方案模型更准确,而所有型号都无法描述GF Rh = 80℃的较小颗粒99.5%。对于混合OA - 作为气溶胶颗粒,化学反应是HHTDMA结果与模型预测之间差异的重要原因。对于RH<的纯OA气溶胶颗粒。 96%和含有RH的颗粒。 99.5%,GF至D0的敏感性分别与RH和D0分别与RH和D0负相关。然而,对于本研究中的所有气溶胶类型,GF至RH的敏感性与D0和RH呈正相关。此外,基于测量的LC明显依赖于D0(在rH = 95℃〜99.5%),RH和颗粒组合物(在rH = 80→99.5%时)。在高RH下测量的气溶胶颗粒的吸湿性可能是有助于解决在子饱和和过度饱和下测量的LC之间的差异的挑战

著录项

  • 来源
    《Atmospheric environment》 |2021年第5期|118318.1-118318.9|共9页
  • 作者单位

    Univ Shanghai Sci & Technol Sch Energy & Power Engn Shanghai 200093 Peoples R China|Univ Shanghai Sci & Technol Shanghai Key Lab Multiphase Flow & Heat Transfer Shanghai 200093 Peoples R China|Xi An Jiao Tong Univ State Key Lab Multiphase Flow Power Engn Xian 710049 Peoples R China|Leibniz Inst Tropospher Res D-04318 Leipzig Germany;

    Leibniz Inst Tropospher Res D-04318 Leipzig Germany|Jinan Univ Inst Environm & Climate Res Guangzhou 511443 Peoples R China;

    Univ Shanghai Sci & Technol Sch Energy & Power Engn Shanghai 200093 Peoples R China|Univ Shanghai Sci & Technol Shanghai Key Lab Multiphase Flow & Heat Transfer Shanghai 200093 Peoples R China;

    Univ Shanghai Sci & Technol Sch Energy & Power Engn Shanghai 200093 Peoples R China|Univ Shanghai Sci & Technol Shanghai Key Lab Multiphase Flow & Heat Transfer Shanghai 200093 Peoples R China;

    Leibniz Inst Tropospher Res D-04318 Leipzig Germany;

    Minist Nat Resources Key Lab Global Change & Marine Atmospher Chem Xiamen 361005 Peoples R China;

    Univ Shanghai Sci & Technol Sch Energy & Power Engn Shanghai 200093 Peoples R China|Univ Shanghai Sci & Technol Shanghai Key Lab Multiphase Flow & Heat Transfer Shanghai 200093 Peoples R China;

    Xi An Jiao Tong Univ State Key Lab Multiphase Flow Power Engn Xian 710049 Peoples R China;

    Leibniz Inst Tropospher Res D-04318 Leipzig Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Aerosol particles; Hygroscopicity; High relative humidity; Oxalic acid; Internal mixture;

    机译:气溶胶颗粒;吸湿性;高相对湿度;草酸;内部混合物;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号