首页> 外文期刊>Atmospheric environment >What temporal resolution is required for remote sensing of regional aerosol concentrations using the Himawari-8 geostationary satellite
【24h】

What temporal resolution is required for remote sensing of regional aerosol concentrations using the Himawari-8 geostationary satellite

机译:使用Himawari-8 GeoTtationary卫星遥感区域气溶胶浓度需要什么时间分辨率

获取原文
获取原文并翻译 | 示例
           

摘要

Few studies have directly addressed the question of what temporal resolution is required for air quality studies using geostationary remote sensing data. If timescales are too large, there is a risk that events affecting air quality may be missed; and if too small, there is a possibility that large data files may be processed frequently, at significant computing cost and potentially without concomitant improvements in the monitoring of air quality. The problem is particularly significant in sparsely populated regional areas such as the Pilbara in Western Australia, where air quality issues arising from a range of events, dispersed over a vast area, increase the risk of environmental health and ecosystems impacts and where the use of conventional monitoring is impractical. This study aimed to establish an optimum temporal sampling interval for air quality studies using geostationary data and determine the impact of different timescales on ground level concentrations. The study was based on an analysis of Himawari-8 satellite data relating to a dust storm within a roll cloud which occurred near Onslow in Western Australia on 8 March 2017. Data from the Himawari-8 satellite were obtained from the Australian Bureau of Meteorology relating to the event and were used to: (1) assess the probability of a satellite overpass coinciding with the event; (2) determine scale factors of different time periods during the event; and (3) undertake an analysis of event duration using remote sensing data. The analysis identified numerous sub-phases of the dust event, each lasting between 30 and 50 min. Data analysis considered all thermal infrared bands and Taylor plot analysis reduced the ten wavelength bands to six independent bands. Principal component analysis of brightness temperature difference between these six bands identified the rate of aerosol compositional change and established that an optimal geostationary sampling frequency of five to 10 min would be required to quantify these temporal changes effectively.
机译:很少有研究直接解决了利用地球静止遥感数据所需的空气质量研究所需的问题。如果时间尺度太大,则可能会错过影响空气质量的事件的风险;并且如果太小,则可以经常可以经常处理大数据文件,并且可能在没有伴随空气质量的监测的情况下潜在地处理。在澳大利亚西澳大利亚州的Pilbara等稀疏人口区域地区的问题特别重要,其中来自一系列事件的空气质量问题,分散在广阔的地区,增加了环境健康和生态系统的风险,以及使用常规的情况监测是不切实际的。本研究旨在利用地球静止数据确定空气质量研究的最佳时间采样间隔,并确定不同时间尺度对地面浓度的影响。该研究基于对Himawari-8卫星数据的分析,与2017年3月8日在西澳大利亚州西澳大利亚附近发生的卷云中的尘埃风暴有关。Himawari-8卫星的数据是从澳大利亚气象局相关的致事件并用于:(1)评估卫星立交桥与事件重合的概率; (2)在活动期间确定不同时间段的比例因素; (3)使用遥感数据进行事件持续时间的分析。分析确定了尘埃事件的许多子阶段,每个持续时间为30到50分钟。数据分析认为所有热红外条带和泰勒绘图分析将十个波长带还原到六个独立频带。这六个频段之间亮度温差的主成分分析确定了气溶胶组成变化的速率,并确定最佳地静止采样频率为5至10分钟,以有效地量化这些时间变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号