首页> 外文期刊>Atmospheric environment >Deposition Rates On Smooth Surfaces And Coagulation Of Aerosol Particles Inside A Test Chamber
【24h】

Deposition Rates On Smooth Surfaces And Coagulation Of Aerosol Particles Inside A Test Chamber

机译:试验室内光滑表面的沉积速率和气溶胶颗粒的凝结

获取原文
获取原文并翻译 | 示例
           

摘要

Because aerosol particle deposition is an important factor in indoor air quality, many empirical and theoretical studies have attempted to understand the process. In this study, we estimated the deposition rate of aerosol particles on smooth aluminum surfaces inside a test chamber. We investigated the influence of turbulent intensity due to ventilation and fan operation. We also investigated two important processes in particle deposition: turbophoresis, which is significant for micron particles, and coagulation, which is relevant to ultrafine particles (UFP diameter < 0.1 μm) at high particle concentrations. Our analysis included semi-empirical estimates of the deposition rates that were compared to available deposition models and verified with simulations of an aerosol dynamics model. In agreement with previous studies, this study found that induced turbulent intensity greatly enhanced deposition rates of fine particles (FP diameter < 1 μm). The deposition rate of FP was proportional to the ventilation rate, and it increased monotonically with fan speed. With our setup, turbophoresis was very important for coarse particles larger than 5 μm. The coagulation of aerosol particles was insignificant when the particle concentration was less than 10~4 cm~(-3) during fan operation. The model simulation results verified that the aerosol dynamics module incorporated in our Multi-Compartment and Size-Resolved Indoor Aerosol Model (MC-SIAM) was valid. The behavior of aerosol particles inside our chamber was similar to that found in real-life conditions with the same ventilation rates (0.018-0.39 h~(-1)) and similar air mixing modes. Therefore, our findings provide insight into indoor particle behavior.
机译:由于气溶胶颗粒沉积是影响室内空气质量的重要因素,因此许多经验和理论研究都试图了解这一过程。在这项研究中,我们估计了气雾颗粒在测试室内光滑铝表面上的沉积速率。我们研究了由于通风和风扇运行而引起的湍流强度的影响。我们还研究了颗粒沉积中的两个重要过程:涡轮电泳(对微米颗粒而言很重要)和凝结(与高颗粒浓度下的超细颗粒(UFP直径<0.1μm)有关)。我们的分析包括对沉积速率的半经验估计,将其与可用的沉积模型进行比较,并通过气溶胶动力学模型的仿真进行验证。与之前的研究一致,本研究发现,诱导的湍流强度大大提高了细颗粒的沉积速率(FP直径<1μm)。 FP的沉积速率与通风速率成正比,并且随风扇速度单调增加。通过我们的设置,涡轮电泳对于大于5μm的粗颗粒非常重要。风机运行过程中,当颗粒浓度小于10〜4 cm〜(-3)时,气溶胶颗粒的凝集作用不明显。模型仿真结果验证了我们的多隔间和尺寸分辨室内气溶胶模型(MC-SIAM)中包含的气溶胶动力学模块是有效的。在相同通风量(0.018-0.39 h〜(-1))和相似的空气混合模式下,我们室内的气溶胶颗粒行为与在现实条件下相似。因此,我们的发现提供了室内颗粒行为的见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号