...
首页> 外文期刊>Atmospheric environment >Simulating chemistry-aerosol-cloud-radiation-climate feedbacks over the continental U.S. using the online-coupled Weather Research Forecasting Model with chemistry (WRF/Chem)
【24h】

Simulating chemistry-aerosol-cloud-radiation-climate feedbacks over the continental U.S. using the online-coupled Weather Research Forecasting Model with chemistry (WRF/Chem)

机译:使用在线耦合的天气研究与化学模型(WRF / Chem)来模拟美国大陆上的化学-气溶胶-云辐射-气候反馈

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The chemistry-aerosol-cloud-radiation-climate feedbacks are simulated using WRF/Chem over the continental U.S. in January and July 2001. Aerosols can reduce incoming solar radiation by up to-9% in January and -16% in July and 2-m temperatures by up to 0.16 ℃ in January and 0.37 ℃ in July over most of the continental U.S. The NO_2 photolysis rates decrease in July by up to -8% over the central and eastern U.S. where aerosol concentrations are high but increase by up to 7% over the western U.S. in July and up to 13% over the entire domain in January. Planetary boundary layer (PBL) height reduces by up to -23% in January and -24% in July. Temperatures and wind speeds in July in big cities such as Atlanta and New York City reduce atear surface but increase at higher altitudes. The changes in PBL height, temperatures, and wind speed indicate a more stable atmospheric stability of the PBL and further exacerbate air pollution over areas where air pollution is already severe. Aerosols can increase cloud optical depths in big cities in July, and can lead to 500-5000 cm~(-3) cloud condensation nuclei (CCN) at a supersaturation of 1% over most land areas and 10-500 cm~(-3) CCN over ocean in both months with higher values over most areas in July than in January, particularly in the eastern U.S. The total column cloud droplet number concentrations are up to 4.9 × 10~6 cm~(-2) in January and up to 11.8 × 10~6 cm~(-2) in July, with higher values over regions with high CCN concentrations and sufficient cloud coverage. Aerosols can reduce daily precipitation by up to 1.1 mm day~(-1) in January and 19.4 mm day~(-1) in July thus the wet removal rates over most of the land areas due to the formation of small CCNs, but they can increase precipitation over regions with the formation of large/giant CCN. These results indicate potential importance of the aerosol feedbacks and an urgent need for their accurate representations in current atmospheric models to reduce uncertainties associated with climate change predictions.
机译:使用WRF / Chem在2001年1月和7月在美国大陆上模拟了化学-气溶胶-云-辐射-气候的反馈。气溶胶可以将进入的太阳辐射减少1%至9%,7月和16日减少-16%。在美国大部分地区,1月份的温度分别升高了0.16℃和7月的0.37℃。在美国中部和东部,气溶胶浓度高但在7月份,NO_2的光解速率下降了-8%。 7月在美国西部的百分比为30%,1月整个美国的百分比为13%。行星边界层(PBL)的高度在1月减少了-23%,在7月减少了-24%。 7月,亚特兰大和纽约等大城市的温度和风速降低/接近地面,但海拔较高时升高。 PBL高度,温度和风速的变化表明PBL的大气稳定性更加稳定,并在空气污染已经严重的地区进一步加剧了空气污染。气溶胶可以增加7月大城市的云光学深度,并且在大多数陆地区域和10-500 cm〜(-3)处会导致500-5000 cm〜(-3)云凝结核(CCN)的过饱和度为1%。 )这两个月的海洋CCN值在7月份的大多数地区都比1月份要高,尤其是在美国东部。1月份的柱状云总液滴浓度最高为4.9×10〜6 cm〜(-2) 7月为11.8×10〜6 cm〜(-2),在高CCN浓度和充足云量覆盖的地区,其值较高。气溶胶可以使1月的每日降水减少多达1.1毫米日(-1),7月减少多达19.4毫米的日降水(-1),因此由于形成了小的CCN,大部分土地上的湿气去除率都很高。随着大型/巨型CCN的形成,可增加区域降水。这些结果表明了气溶胶反馈的潜在重要性,并迫切需要在当前的大气模型中准确表示以减少与气候变化预测相关的不确定性。

著录项

  • 来源
    《Atmospheric environment》 |2010年第29期|p.3568-3582|共15页
  • 作者

    Yang Zhang; X.-Y. Wen; C.J. Jang;

  • 作者单位

    Department of Marine, Earth, and Atmospheric Science, North Carolina State University, Campus Box 8208, Raleigh, NC 27695, USA;

    rnDepartment of Marine, Earth, and Atmospheric Science, North Carolina State University, Campus Box 8208, Raleigh, NC 27695, USA;

    rnOffice of Air Quality Planning and Standards, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    WRF/chem; aerosol direct effects; aerosol indirect effects; CCN; cloud droplet number concentrations;

    机译:WRF /化学;气溶胶直接作用;气溶胶间接作用;CCN;云滴数浓度;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号