首页> 外文期刊>Atmospheric environment >Impacts of ozone air pollution and temperature extremes on crop yields: Spatial variability, adaptation and implications for future food security
【24h】

Impacts of ozone air pollution and temperature extremes on crop yields: Spatial variability, adaptation and implications for future food security

机译:臭氧空气污染和极端温度对作物产量的影响:空间变异,适应及其对未来粮食安全的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Ozone air pollution and climate change pose major threats to global crop production, with ramifications for future food security. Previous studies of ozone and warming impacts on crops typically do not account for the strong ozone-temperature correlation when interpreting crop-ozone or crop-temperature relationships, or the spatial variability of crop-to-ozone sensitivity arising from varietal and environmental differences, leading to potential biases in their estimated crop losses. Here we develop an empirical model, called the partial derivative-linear regression (PDLR) model, to estimate the spatial variations in the sensitivities of wheat, maize and soybean yields to ozone exposures and temperature extremes in the US and Europe using a composite of multidecadal datasets, fully correcting for ozone temperature covariation. We find generally larger and more spatially varying sensitivities of all three crops to ozone exposures than are implied by experimentally derived concentration-response functions used in most previous studies. Stronger ozone tolerance is found in regions with high ozone levels and high consumptive crop water use, reflecting the existence of spatial adaptation and effect of water constraints. The spatially varying sensitivities to temperature extremes also indicate stronger heat tolerance in crops grown in warmer regions. The spatial adaptation of crops to ozone and temperature we find can serve as a surrogate for future adaptation. Using the PDLR-derived sensitivities and 2000-2050 ozone and temperature projections by the Community Earth System Model, we estimate that future warming and unmitigated ozone pollution can combine to cause an average decline in US wheat, maize and soybean production by 13%, 43% and 28%, respectively, and a smaller decline for European crops. Aggressive ozone regulation is shown to offset such decline to various extents, especially for wheat. Our findings demonstrate the importance of considering ozone regulation as well as ozone and climate change adaptation (e.g., selecting heat- and ozone-tolerant cultivars, irrigation) as possible strategies to enhance future food security in response to imminent environmental threats. (C) 2017 The Authors. Published by Elsevier Ltd.
机译:臭氧空气污染和气候变化对全球农作物生产构成重大威胁,对未来粮食安全产生影响。以前关于臭氧和变暖对农作物的影响的研究通常在解释作物-臭氧或作物-温度关系时,或臭氧的温度相关性不强时,或者由于品种和环境差异而导致的作物对臭氧敏感性的空间变异性,导致估计作物损失的潜在偏见。在这里,我们开发了一个经验模型,称为偏导数线性回归(PDLR)模型,使用数十年的综合数据,估算了美国和欧洲的小麦,玉米和大豆单产对臭氧暴露和极端温度的敏感性的空间变化。数据集,完全校正了臭氧温度的协变。我们发现,与以往大多数研究中使用的实验得出的浓度响应函数所隐含的相比,我们发现这三种作物对臭氧暴露的敏感性通常更大,并且在空间上的变化也更大。在臭氧水平高和农作物耗水量高的地区发现了更强的臭氧耐受性,这反映了空间适应的存在和水约束的影响。对极端温度的空间变化敏感性也表明,在温暖地区种植的农作物具有更高的耐热性。我们发现作物对臭氧和温度的空间适应性可以作为未来适应性的替代。根据社区地球系统模型使用PDLR得出的敏感性以及2000-2050年的臭氧和温度预测,我们估计未来的变暖和未缓解的臭氧污染可能共同导致美国小麦,玉米和大豆的平均产量下降13%,43 %和28%,欧洲作物的降幅较小。积极的臭氧监管措施已在不同程度上抵消了这种下降,特别是对于小麦。我们的发现表明,考虑将臭氧调节以及对臭氧和气候变化的适应(例如,选择耐高温和耐臭氧的品种,灌溉)作为增强战略来应对未来环境威胁的可能策略的重要性。 (C)2017作者。由Elsevier Ltd.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号