...
首页> 外文期刊>The Astrophysical journal >MAGNETOHYDRODYNAMIC SHOCK CONDITIONS FOR ACCRETING PLASMA ONTO KERR BLACK HOLES. I.
【24h】

MAGNETOHYDRODYNAMIC SHOCK CONDITIONS FOR ACCRETING PLASMA ONTO KERR BLACK HOLES. I.

机译:用于将等离子体吸附到KERR黑色孔中的磁氢动力冲击条件。一世。

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

We extend the work by App1 and Camenzind for special relativistic magnetohydrodynamic (MHD) jets to fully general relativistic studies of standing shock formation for accreting MHD plasma in a rotating, stationary, and axisymmetric black hole magnetosphere. All the postshock physical quantities are expressed in terms of the relativistic compression ratio, which can be obtained in terms of preshock quantities. Then, the downstream state of a shocked plasma is determined by the upstream state of the accreting plasma. In this paper sample solutions are presented for slow magnetosonic shocks for accreting flows in the equatorial plane. We find that some properties of the slow magnetosonic shock for the rotating magnetosphere can behave like a fast magnetosonic shock. In fact, it is confirmed that in the limit of weak gravity for the upstream nonrotating accretion plasma where the magnetic field lines are leading and rotating, our results are very similar to the fast magnetosonic shock solution by Appl and Camenzind. However, we find that the situation becomes far more complicated because of the effects of strong gravity and rotation, such as the frame-dragging effects. We show the tendency that the large spin of the black hole makes the slow magneto-sonic shock strong for the accretion solutions with the same energy flux.
机译:我们将App1和Camenzind的特殊相对论磁流体动力学(MHD)射流的工作扩展到了在旋转,固定和轴对称黑洞磁层中吸积MHD等离子体的立式激波形成的完全一般相对论研究。震后的所有物理量都用相对论压缩比表示,而压缩率可以用震前的量求出。然后,受激等离子体的下游状态由吸出等离子体的上游状态确定。在本文中,提出了慢磁声冲击的样本解决方案,用于在赤道平面内积聚水流。我们发现旋转磁层的慢磁声冲击的某些特性可以表现为快速磁声冲击。实际上,已经证实,在磁场线引导和旋转的上游非旋转积聚等离子体的弱重力极限下,我们的结果与Appl和Camenzind的快速磁声冲击解决方案非常相似。但是,我们发现,由于强大的重力和旋转效应(例如,拖曳框架),情况变得更加复杂。我们显示出这样一种趋势:对于具有相同能量通量的吸积解决方案,黑洞的大自旋使缓慢的磁声冲击变得很强。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号