首页> 外文期刊>The Astrophysical journal >ASTROMETRIC MICROLENSING OF DISTANT SOURCES CAUSED BY STARS IN THE GALAXY
【24h】

ASTROMETRIC MICROLENSING OF DISTANT SOURCES CAUSED BY STARS IN THE GALAXY

机译:星系中恒星造成远源的天文微观形成

获取原文
获取原文并翻译 | 示例
       

摘要

We investigate properties of astrometric microlensing of distant sources (such as quasi-stellar objects [QSOs] and radio galaxies) caused by stars in the Galaxy, mainly focusing on application of the VERA (VLBI Exploration of Radio Astrometry) project. Assuming typical parameters for the Galactic disk and bulge, we show that the maximum optical depth for astrometric shift of the 10 μas level is 8.9 x 10~(-2) for the QSO-disk lensing case and 3.8 x 10~(-2) for the QSO-bulge lensing case. We also find that the maximum optical depth for QSO-disk lensing is larger by an order of magnitude than that for disk-disk or bulge-disk lensing (assuming a typical source distance of 8-10 kpc). In addition to optical depth, we also calculate the event rate and find that the maximum event rate for the QSO-disk lensing case is 1.2 x 10~(-2) events yr~(-1), which is about 30 times greater than that for disk-disk lensing. This high event rate implies that if one monitors 10 QSOs behind the Galactic center region for 10 yr, at least one astrometric microlensing event should be detected. Therefore, monitoring distant radio sources with VERA can be a new tool to study astrometric microlensing caused by stars in the Galaxy. We also study the event duration of astrometric microlensing and find that the mean event duration for QSO-disk lensing is 7.5 yr for QSOs located near the Galactic center. This event duration for QSO-disk lensing is reasonably short compared to the project lifetime of VERA, which is anticipated to be ~20 yr. We also find that while the minimum event duration for bulge-bulge lensing is as short as 2.6 yr, the event duration for disk-disk lensing cannot be shorter than 15 yr. Thus, although astrometric microlensing of bulge sources/lenses can be studied by optical astrometric missions like SIM and GAIA, detections of disk events with the space astrometric missions are fairly difficult because of the limited project lifetime (typically ~5 yr) as well as the heavy dust extinction. Therefore, for studying astrometric microlensing by disk stars, VERA can be a powerful tool based on observations of distant sources like QSOs and radio galaxies. We discuss the implications of astrometric microlensing for VERA by focusing on estimating the lens mass, and we also present some possible candidates of radio sources toward which astrometric microlensing events should be searched for with VERA.
机译:我们研究了由银河系中的恒星引起的遥远源(如准星体[QSO]和射电星系)的天文微透镜特性,主要研究了VERA(射电占星术的VLBI探索)项目的应用。假设银河星系盘和凸起的典型参数,我们证明,对于QSO盘透镜盒,天体位移10μas的最大光学深度为8.9 x 10〜(-2),而3.8 x 10〜(-2)用于QSO凸起的镜头盒。我们还发现,QSO磁盘透镜的最大光学深度比磁盘或凸透镜透镜的最大光学深度大一个数量级(假设典型光源距离为8-10 kpc)。除了光学深度之外,我们还计算了事件发生率,发现QSO磁盘镜头案例的最大事件发生率是1.2 x 10〜(-2)个事件yr〜(-1),大约是事件的yr〜(-1)的30倍。用于磁盘磁盘镜像。这种高事件发生率意味着,如果在银河系中心区域后方监视10个QSO达10年,则至少应检测到一个天文微透镜事件。因此,利用VERA监视遥远的无线电源可以成为研究银河中恒星引起的天文微透镜的新工具。我们还研究了天文微透镜的事件持续时间,发现位于银河中心附近的QSO的QSO磁盘透镜平均事件发生时间为7.5年。与VERA的项目寿命相比,QSO磁盘透镜的这一事件持续时间相当短,预计约为20年。我们还发现,虽然凸出-凸出镜头的最小事件持续时间短至2.6年,但磁盘-磁盘-凸出镜头的事件持续时间不能短于15年。因此,尽管可以通过SIM和GAIA等光学天文任务研究凸出源/镜头的天文微透镜,但是由于项目寿命有限(通常约5年),而且使用空间天文任务,很难用空间天文任务检测磁盘事件。大量粉尘灭绝。因此,对于研究盘状星的天文微透镜,VERA可以成为基于遥远源(如QSO和射电星系)观测的强大工具。我们通过着重于估计透镜质量来讨论天文微透镜对VERA的影响,并且我们还提出了一些可能需要使用VERA搜索天文微透镜事件的无线电源候选对象。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号