...
首页> 外文期刊>The Astrophysical journal >MAGNETICALLY DRIVEN ACCRETION FLOWS IN THE KERR METRIC. Ⅱ. STRUCTURE OF THE MAGNETIC FIELD
【24h】

MAGNETICALLY DRIVEN ACCRETION FLOWS IN THE KERR METRIC. Ⅱ. STRUCTURE OF THE MAGNETIC FIELD

机译:磁驱动的增生流量,以克尔度量。 Ⅱ。磁场的结构

获取原文
获取原文并翻译 | 示例
           

摘要

We present a detailed analysis of the magnetic field structure found in a set of four general relativistic three-dimensional MHD simulations of accreting tori in the Kerr metric with different black hole spins. Among the properties analyzed are the field strength as a function of position and black hole spin, the shapes of field lines, the degree to which they connect different regions, and their degree of tangling. Strong magnetic field is found toward small radii, and field strength increases with black hole spin. In the main disk body, inner torus, and corona the field is primarily toroidal. Most field lines passing through a given radius in these regions wander through a narrow radial range, suggesting an overall tightly wound spiral structure. In the main disk body and inner torus sharp field-line bends on small spatial scales are superposed on the spirals, but the field lines are much smoother in the corona. The magnetic field in the plunging region is also comparatively smooth, being stretched out radially by the infalling gas. The magnetic field in the axial funnel resembles a split monopole, but with evidence of frame dragging of the field lines near the poles of the black hole. We investigate prior speculations about the structure of the magnetic fields and discuss how frequently certain configurations are seen in the simulations. For example, coronal loops are very rare, and field lines connecting high latitudes on the event horizon to the disk are not found at all. Almost the entire system is matter-dominated; the only force-free regions are in the axial funnel. We also analyze the distribution of current density, with a view toward identifying possible locations of magnetic energy dissipation. Regions of high current density are concentrated toward the inner torus and plunging region. Dissipation inside the marginally stable orbit may provide a new source of energy for radiation, supplementing the dissipation associated with torques in the stably orbiting disk body.
机译:我们提供了对磁场结构的详细分析,该磁场结构是在四个不同的相对论性三维MHD模拟中发现的,这些模拟在不同黑洞旋转的情况下在Kerr度量中累积了托里。分析的特性包括场强与位置和黑洞自旋的关系,场线的形状,它们连接不同区域的程度以及它们的缠结程度。在小半径处会发现强磁场,并且磁场强度会随着黑洞自旋而增加。在磁盘主体,内环面和日冕中,磁场主要为环形。在这些区域中,通过给定半径的大多数磁力线会在狭窄的径向范围内徘徊,表明整体上紧密缠绕的螺旋结构。在主盘体和内环面中,小空间尺度上的尖锐的磁力线弯曲叠加在螺旋形上,但是在电晕中磁力线要平滑得多。插入区域中的磁场也比较平滑,被下落的气体径向扩展。轴向漏斗中的磁场类似于分裂的单极子,但有证据表明磁力线在黑洞极点附近发生框架拖曳。我们调查了有关磁场结构的先验推测,并讨论了在模拟中看到某些配置的频率。例如,日冕环非常罕见,根本没有发现将事件视界上的高纬度连接到磁盘的场线。几乎整个系统都是物质主导的。唯一的无力区域位于轴向漏斗中。我们还分析了电流密度的分布,以期确定磁能耗散的可能位置。高电流密度的区域集中向内环面和下降区域。边缘稳定轨道内部的耗散可为辐射提供新的能量来源,补充了与稳定绕转的盘体中的扭矩相关的耗散。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号