...
【24h】

PLANET-DISK SYMBIOSIS

机译:圆盘共生症

获取原文
获取原文并翻译 | 示例

摘要

Planets form in disks around young stars. Interactions with these disks cause them to migrate and thus affect their final orbital periods. We suggest that the connection between planets and disks may be deeper and involve a symbiotic evolution. By contributing to the outward transport of angular momentum, planets promote disk accretion. Here we demonstrate that planets sufficiently massive to open gaps could be the primary agents driving disk accretion. Those having masses below the gap opening threshold drift inward more rapidly than the disk material and can only play a minor role in its accretion. An even more intimate symbiosis involving gap opening planets may result if they acquire most of their mass prior to gap formation. Given a small initial eccentricity, just a fraction of a percent, the orbital eccentricity of a massive planet may grow rapidly once a mass in excess of the planet's mass has been repelled to form a gap around the planet's orbit. Then, as the planet's radial excursions approach the gap's width, subsequent eccentricity growth slows so that the planet's orbit continues to be confined within the gap.
机译:行星形成在年轻恒星周围的盘中。与这些磁盘的相互作用会导致它们迁移,从而影响其最终轨道周期。我们建议,行星与盘之间的联系可能更深,并涉及共生演化。通过促进角动量的向外传输,行星促进了磁盘的积聚。在这里,我们证明了足够大以打开间隙的行星可能是推动磁盘增加的主要因素。质量低于间隙打开阈值的质量比磁盘材料更快地向内漂移,并且只能在其积聚中起较小的作用。如果在间隙形成之前它们获得了大部分质量,则可能导致与间隙打开行星更紧密的共生。如果初始偏心率很小,仅为百分之一,那么一旦质量超过行星质量的质量被排斥形成绕行星轨道的间隙,大型行星的轨道偏心率可能会迅速增长。然后,随着行星的径向偏移接近间隙的宽度,随后的离心率增长变慢,因此行星的轨道继续被限制在间隙内。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号