...
首页> 外文期刊>The Astrophysical journal >ARE CORONAE OF MAGNETICALLY ACTIVE STARS HEATED BY FLARES? III. ANALYTICAL DISTRIBUTION OF SUPERPOSED FLARES
【24h】

ARE CORONAE OF MAGNETICALLY ACTIVE STARS HEATED BY FLARES? III. ANALYTICAL DISTRIBUTION OF SUPERPOSED FLARES

机译:耀斑是否加热了磁活跃星的冠冕?三,叠加光斑的解析分布

获取原文
获取原文并翻译 | 示例

摘要

We study the hypothesis that observed X-ray/extreme-ultraviolet emission from coronae of magnetically active stars is entirely (or to a large part) due to the superposition of flares, using an analytic approach to determine the amplitude distribution of flares in light curves. The flare-heating hypothesis is motivated by time series that show continuous variability suggesting the presence of a large number of superposed flares with similar rise and decay timescales. We rigorously relate the amplitude distribution of stellar flares to the observed histograms of binned counts and photon waiting times, under the assumption that the flares occur at random and have similar shapes. Our main results are as follows: (1) The characteristic function (Fourier transform of the probability density) of the expected counts in time bins Δt is φ_F(s, Δt) = exp (-T~(-1) ∫_(-∞)~∞ dt{1 - φ_a[sΞ(t, Δt)]}), where T is the mean flaring interval, φ_a(s) is the characteristic function of the flare amplitudes, and Ξ(t, Δt) is the flare shape convolved with the observational time bin. (2) The probability of finding n counts in time bins Δt is P_c(n) = (2π)~(-1) ∫_0~(2+) ds e~(-ins)φ_F(s, Δt). (3) The probability density of photon waiting times x is P_δ(x) = partial deriv_x~2φ_F(i, x)/, with = partial deriv_xφ_F(i, x)|_(x=0) the mean count rate. An additive independent background is readily included. Applying these results to Extreme Ultraviolet Explorer/Deep Survey instrument observations of the flaring star AD Leo, we find that the flare amplitude distribution can be represented by a truncated power law with a power-law index of 2.3 +-0.1. Our analytical results agree with existing Monte Carlo results of Kashyap et al. and Guedel et al. The method is applicable to a wide range of further stochastically bursting astrophysical sources such as cataclysmic variables, gamma-ray burst substructures, X-ray binaries, and spatially resolved observations of solar flares.
机译:我们研究了一种假设,即使用火炬的叠加,从磁活动恒星的日冕中观察到的X射线/极紫外发射完全(或很大一部分)是由于耀斑的叠加而造成的,我们使用一种分析方法来确定耀斑在光曲线中的振幅分布。火炬加热假说是由时间序列驱动的,该时间序列显示出连续的可变性,表明存在大量具有相似上升和衰减时间尺度的叠加火炬。在耀斑随机出现且形状相似的假设下,我们将星耀斑的幅度分布与观测到的二进制计数和光子等待时间的直方图严格相关。我们的主要结果如下:(1)时间仓中期望计数的特征函数(概率密度的傅立叶变换)为φ_F(s,Δt)= exp(-T〜(-1)∫_(- ∞)〜∞dt {1-φ_a[sΞ(t,Δt)]}),其中T是平均喇叭口间隔,φ_a(s)是喇叭口振幅的特征函数,Ξ(t,Δt)是耀斑形状与观测时间卷积卷积。 (2)在时间区间Δt中找到n个计数的概率为P_c(n)=(2π)〜(-1)∫_0〜(2+)ds e〜(-ins)φ_F(s,Δt)。 (3)光子等待时间x的概率密度为P_δ(x)=部分deriv_x〜2φ_F(i,x)/ ,其中 =部分deriv_xφ_F(i,x)| _(x = 0)平均计数率。容易包括添加剂无关的背景。将这些结果应用到对耀斑恒星AD Leo的Extreme Ultraviolet Explorer / Deep Survey仪器观测中,我们发现耀斑振幅分布可以由幂律指数为2.3 + -0.1的截短幂律表示。我们的分析结果与Kashyap等人的现有蒙特卡洛结果一致。和Guedel等。该方法适用于广泛的其他随机爆发的天体物理源,例如灾变变量,伽马射线爆发的子结构,X射线二元以及对太阳耀斑的空间分辨观测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号