...
首页> 外文期刊>The Astrophysical journal >Intermittency In The Photosphere And Corona Above An Active Region
【24h】

Intermittency In The Photosphere And Corona Above An Active Region

机译:活跃区域上方光球和电晕的间歇性

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Recent studies have demonstrated without doubt that the magnetic field in the photosphere and corona is an intermittent structure, opening new views of the underlying physics. In particular, such problems as the existence in the corona of localized areas with extremely strong resistivity (required to explain magnetic reconnection at all scales) and the interchange between small and large scales (required in the study of photospheric-coronal coupling), to name a few, can be easily captured by the concept of intermittency. This study focuses on simultaneous time variations of intermittency properties derived in the photosphere, chromosphere, and corona. We analyze data for NOAA Active Region 10930 acquired between 2006 December 8, 12:00 UT, and December 13, 18:45 UT. Photospheric intermittency is inferred from Hinode magnetic field measurements, while intermittency in the transition region and corona is derived from Nobeyama 9 GHz radio polarization measurements and high-cadence Hinode XRT (thin-Be) data, as well as GOES 1-8 A flux. The photospheric dynamics and its possible relationship with the intermittency variations are also analyzed by calculating the kinetic vorticity. In this case study, we find the following chain of events: The intermittency of the photospheric magnetic field peaked after the specific kinetic vorticity of plasma flows in the active region reached its maximum (4 hr time delay). In turn, a gradual increase of coronal intermittency occurred after the peak of the photospheric intermittency. The time delay between the peak of photospheric intermittency and the occurrence of the first strong (X3.4) flare was approximately 1.3 days. Our analysis seems to suggest that the enhancement of intermittency/complexity first occurs in the photosphere and is later transported toward the corona.
机译:毫无疑问,最近的研究表明,光球和电晕中的磁场是一种断续的结构,为基础物理学开辟了新的视野。尤其是诸如存在极高电阻率的局部区域的电晕中的问题(要求解释所有尺度的磁重连接)以及小尺度与大尺度之间的互换(在光球日冕耦合研究中需要)等问题。间歇性概念可以很容易地捕捉到一些。这项研究的重点是在光球,色球和电晕中产生的间歇性的同时时间变化。我们分析了2006年12月8日12:00 UT和12月13日18:45 UT之间获得的NOAA活动区域10930的数据。从Hinode磁场测量推断出光球的间歇性,而过渡区和电晕的间歇性则从Nobeyama 9 GHz无线电极化测量和高节奏Hinode XRT(稀薄)数据以及GOES 1-8 A通量得出。还通过计算动力学涡度来分析光圈动力学及其与间歇变化的可能关系。在此案例研究中,我们发现了以下一系列事件:在活动区域​​中的等离子体流的特定动态涡度达到最大值(4小时时间延迟)后,光球磁场的间歇性达到峰值。反过来,在光球间歇性达到峰值之后,冠状间歇性逐渐增加。光球间歇性峰值与第一次强(X3.4)耀斑发生之间的时间延迟约为1.3天。我们的分析似乎表明,间歇性/复杂性的增强首先发生在光球中,然后又被运向电晕。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号