首页> 外文期刊>The Astrophysical journal >LONG-TERM EVOLUTION OF MAGNETIC TURBULENCE IN RELATIVISTIC COLLISIONLESS SHOCKS: ELECTRON-POSITRON PLASMAS
【24h】

LONG-TERM EVOLUTION OF MAGNETIC TURBULENCE IN RELATIVISTIC COLLISIONLESS SHOCKS: ELECTRON-POSITRON PLASMAS

机译:相对论无电击中磁湍流的长期演变:电子-正电子等离子体

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

We study the long term evolution of magnetic fields generated by an initially unmagnetized collisionless rela tivistic e~+e~- shock. Our two-dimensional particle-in-cell numerical simulations show that downstream of such a Weibel-mediated shock, particle distributions are approximately isotropic, relativistic Maxwellians, and the magnetic turbulence is highly intermittent spatially. The nonpropagating magnetic fields decay in amplitude and do not merge. The fields start with magnetic energy density ~ 0.1 -0.2 of equipartition, but rapid downstream decay drives the fields to much smaller values, below ~10~(-3) of equipartition after ~10~3 skin depths. To construct a theory to follow field decay to these smaller values, we hypothesize that the observed damping is a variant of Landau damping. The model is based on the small value of the downstream magnetic energy density, which only weakly perturbs particle orbits, for homogeneous turbulence. Using linear kinetic theory, we find a simple analytic form for the damping rates for small amplitude, subluminous electromagnetic fields. Our theory predicts that overall magnetic energy decays as (ω_pt)~(-q) with q ~ 1, which compares with simulations. However, our theory predicts overly rapid damping of short-wavelength modes. Magnetic trapping of particles within the highly spatially intermittent downstream magnetic structures may be the origin of this discrepancy and may allow for some of this initial magnetic energy to persist. Absent additional physical processes that create longer wavelength, more persistent fields, we conclude that initially unmagnetized relativistic shocks in electron-positron plasmas are unable to form persistent downstream magnetic fields. These results put interesting constraints on synchrotron models for the prompt and afterglow emission from GRBs. We also comment on the relevance of these results for relativistic electron-ion shocks.
机译:我们研究了由最初未磁化的无碰撞相对论e〜+ e〜-冲击产生的磁场的长期演化。我们的二维单元格内数值模拟表明,在这种由Weibel介导的冲击的下游,粒子分布近似为各向同性,相对论的麦克斯韦定律,并且磁湍流在空间上是高度间歇性的。非传播磁场的振幅会衰减并且不会合并。磁场以等分的〜0.1 -0.2的磁能密度开始,但是迅速的下游衰减将磁场缩小到〜10〜3趋肤深度后的等分的〜10〜(-3)以下的值。为了构建一个理论,使场衰减遵循这些较小的值,我们假设观察到的阻尼是Landau阻尼的一种变体。该模型基于下游磁能密度的较小值,该值仅会微弱地扰动粒子轨道,以获得均匀的湍流。使用线性动力学理论,我们找到了小振幅亚光电磁场的阻尼率的简单解析形式。我们的理论预测,总磁能在q〜1时以(ω_pt)〜(-q)衰减,这与模拟比较。但是,我们的理论预测短波模式会过快衰减。高度空间间歇的下游磁性结构内的颗粒的磁性捕获可能是这种差异的根源,并且可能允许某些初始磁能持续存在。如果没有额外的物理过程产生更长的波长,更持久的磁场,我们得出的结论是,电子-正电子等离子体中最初未磁化的相对论激波无法形成持久的下游磁场。这些结果对同步加速器模型的GRB的快速和余辉发射提出了有趣的约束。我们还评论了这些结果与相对论电子离子冲击的相关性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号