首页> 外文期刊>The Astrophysical journal >OUR SUN. V. A BRIGHT YOUNG SUN CONSISTENT WITH HELIOSEISMOLOGY AND WARM TEMPERATURES ON ANCIENT EARTH AND MARS
【24h】

OUR SUN. V. A BRIGHT YOUNG SUN CONSISTENT WITH HELIOSEISMOLOGY AND WARM TEMPERATURES ON ANCIENT EARTH AND MARS

机译:我们的太阳。五,明亮的年轻太阳与古地球和火星的流变学和温暖的温度相一致

获取原文
获取原文并翻译 | 示例
           

摘要

The relatively warm temperatures required on early Earth and Mars have been difficult to account for via warming from greenhouse gases. We tested whether this problem can be resolved for both Earth and Mars by a young Sun that is brighter than predicted by the standard solar model (SSM). We computed high-precision solar evolutionary models with slightly increased initial masses of M_i = 1.01-1.07 solar mass; for each mass, we considered three different mass-loss scenarios. We then tested whether these models were consistent with the current high-precision helioseismic observations. The relatively modest mass-loss rates in these models are consistent with observational limits from young stars and estimates of the past solar wind obtained from lunar rocks and do not significantly affect the solar lithium depletion. For appropriate initial masses, all three mass-loss scenarios are capable of yielding a solar flux 3.8 Gyr ago high enough to be consistent with water on ancient Mars. The higher flux at the planets is due partly to the fact that a more massive young Sun would be intrinsically more luminous and partly to the fact that the planets would be closer to the more massive young Sun. At birth on the main sequence, our preferred initial mass M_i = 1.07 solar mass would produce a solar flux at the planets 50% higher than that of the SSM, namely, a flux 5% higher than the present value (rather than 30% lower, which the SSM predicts). At first (for 1-2 Gyr), the solar flux would decrease; subsequently, it would behave more like the flux in the SSM, increasing until the present. We find that all of our mass-losing solar models are consistent with the helioseismic observations; in fact, our preferred mass-losing case with M_i = 1.07 solar mass is in marginally (although insignificantly) better agreement with the helioseismology than is the SSM. The early solar mass loss of a few percent does indeed leave a small fingerprint on the Sun's internal structure. However, for helioseismology to significantly constrain early solar mass loss would require higher accuracy in the observed solar parameters and input physics, namely, by a factor of ~3 for the observed solar surface composition and a factor of ~2 for the solar interior opacities, the p-p nuclear reaction rate, and the diffusion constants for gravitational settling.
机译:很难通过温室气体的变暖来解释地球早期和火星所需的相对温暖的温度。我们测试了比标准太阳模型(SSM)预测的明亮的年轻太阳是否可以解决地球和火星问题。我们计算了初始质量略有增加的M_i = 1.01-1.07太阳质量的高精度太阳演化模型;对于每种质量,我们考虑了三种不同的质量损失情景。然后,我们测试了这些模型是否与当前的高精度日震观测结果一致。这些模型中相对较小的质量损失率与年轻恒星的观测极限以及从月球岩石获得的过去太阳风的估计一致,并且不会显着影响太阳锂的消耗。对于适当的初始质量,这三种质量损失情景都能够产生3.8 Gyr以前足够高的太阳通量,足以与古代火星上的水保持一致。行星上较高的通量部分是由于这样一个事实,即质量更大的年轻太阳本来会更发光,部分原因是这些行星将离质量更大的年轻太阳更近。在主序列诞生时,我们首选的初始质量M_i = 1.07太阳质量将在行星上产生比SSM高50%的太阳通量,即比当前值高5%(而不是低30%) ,由SSM预测)。起初(1-2 Gyr),太阳通量会减少;随后,它的行为更像是SSM中的通量,直到现在一直在增加。我们发现我们所有的质量损失太阳模型都与日震观测相一致。实际上,我们首选的M_i = 1.07太阳质量的质量损失情况与SHS相比,在边坡(尽管微不足道)上与流变学的一致性更好(尽管微不足道)。早期的太阳质量损失确实确实在太阳的内部结构上留下了一个小的指纹。但是,要想用地震学来显着地限制早期太阳质量的损失,就需要在观测到的太阳参数和输入物理学方面有更高的精度,即,观测到的太阳表面组成的系数约为〜3,太阳内部不透明系数的系数约为〜2, pp核反应速率,以及重力沉降的扩散常数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号