...
首页> 外文期刊>The Astrophysical journal >FRACTIONATION OF Xe, Kr, AND Ar IN THE SOLAR CORPUSCULAR RADIATION DEDUCED BY CLOSED SYSTEM ETCHING OF LUNAR SOILS
【24h】

FRACTIONATION OF Xe, Kr, AND Ar IN THE SOLAR CORPUSCULAR RADIATION DEDUCED BY CLOSED SYSTEM ETCHING OF LUNAR SOILS

机译:Xe,Kr和Ar在月球土壤的封闭系统刻蚀导致的太阳体辐射中的分馏

获取原文
获取原文并翻译 | 示例

摘要

We etched lunar soil samples in several steps in a vacuum-tight device and analyzed the evolved solar noble gases on line in a mass spectrometer. This technique avoids diffusive noble gas fractionation during analysis and therefore provides reliable element abundance ratios as a function of depth in the grains. The ratios He/Ar and Ne/Ar strongly increase in the course of the etching and reach present-day solar wind ratios toward the end of the runs. This shows that the solar wind component, residing in the top few hundred angstroms, lost much of its He and Ne, whereas even these mobile light noble gases are retained nearly unfractionated in the solar energetic particle (SEP) component at larger depths. In contrast to the light gases, the Kr/Xe ratio is constant throughout all runs, and the same is essentially true also for Ar/Kr. This strongly suggests that the relative abundances of the three heavy noble gases in the incoming solar corpuscular radiation are conserved in lunar samples. The Kr/Xe ratio in samples irradiated in the past ~100 Myr is about a factor of 2.5 lower than the most probable value in the Sun. The same ratio was another factor of 2 lower 1-3 Gyr ago. Kr/Ar in the solar corpuscular radiation is also slightly fractionated. Xe is overabundant relative to Ar by about the same factor as are elements with a first ionization potential (FIP) of less than ~10 eV relative to high-FIP elements. This seems astonishing, since Xe has a FIP above 10 eV. However, Geiss, Gloeckler, & von Steiger showed recently that the Xe overabundance deduced here is expected if actually the first ionization time rather than the FIP governs the fractionation in the solar wind source region.
机译:我们在真空密封设备中分多个步骤蚀刻了月球土壤样品,并在质谱仪上在线分析了所产生的太阳稀有气体。该技术避免了分析过程中扩散性稀有气体的分馏,因此可提供可靠的元素丰度比,作为晶粒深度的函数。在蚀刻过程中,He / Ar和Ne / Ar的比值显着增加,并在运行结束时达到当今的太阳风比。这表明,位于顶部几百埃的太阳风分量损失了大部分He和Ne,而即使这些流动的轻质惰性气体,在更大的深度处也几乎没有碎裂地保留在太阳高能粒子(SEP)分量中。与轻质气体相反,Kr / Xe比在所有运行过程中都是恒定的,对于Ar / Kr也基本上相同。这有力地表明,在月球样品中守恒了入射太阳小体辐射中三种重惰性气体的相对丰度。过去〜100 Myr辐照的样品中的Kr / Xe比值比太阳最可能的值低2.5倍。相同的比率是Gyr 1-3之前降低2的另一个因素。太阳微粒辐射中的Kr / Ar也略有分级。 Xe相对于Ar的丰度与相对于高FIP元素的第一电离势(FIP)小于〜10 eV的元素大致相同。这似乎令人惊讶,因为Xe的FIP高于10 eV。但是,Geiss,Gloeckler和von Steiger最近表明,如果实际上是由第一个电离时间而不是FIP来控制太阳风源区域中的分馏,则可以推断出此处推断的Xe过剩。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号