...
首页> 外文期刊>The Astrophysical journal >PROPAGATION OF NUCLEAR BURNING FRONTS ON ACCRETING NEUTRON STARS: X-RAY BURSTS AND SUB-HERTZ NOISE
【24h】

PROPAGATION OF NUCLEAR BURNING FRONTS ON ACCRETING NEUTRON STARS: X-RAY BURSTS AND SUB-HERTZ NOISE

机译:核燃烧锋在中子星上的传播:X射线爆裂和亚赫兹噪声

获取原文
获取原文并翻译 | 示例

摘要

We identify a new regime of time dependent helium burning for high accretion rate neutron stars and suggest that this burning is the origin of the low-level luminosity variations (on timescales of 10-10~4 s, designated the "very low-frequency noise" (VLFN) by van der Klis and collaborators) always detected in the brightest accreting X-ray sources. Only two nuclear burning regimes were previously recognized. At accretion rates in excess of the Eddington limit [M approx> (1-3) x 10~(-8) solar mass yr~(-1)], the accreted matter fuses steadily. At very low M, the star's entire surface is rapidly (approx mass 10 s) burned by a fast propagating convective burning front at regular intervals, giving quasi-periodic Type I X-ray bursts. We show that for the observationally interesting range of 5 x 10~(-10)solar mass yr~(-1) approx< 10~(-8) solar mass yr~(-1), parts of the stellar surface burn slowly. At these accretion rates, a local thermonuclear instability starts a fire which propagates horizontally at υ ~300 cm s~(-1). The fire propagates around the flammable surface in roughly the same time it takes to accrete enough fuel for the next instability (~10~3-10~4 s), so that only a few fires are burning at once, giving rise to large luminosity flares. Nuclear burning is always time dependent for sub-Eddington local accretion rates: a local patch undergoes a recurrent cycle, accumulating fuel for hours until it becomes thermally unstable or is "ignited" by a nearby burning region. The global pattern of burning and the resulting luminosity are thus very dependent on how fast nuclear fires spread around the star. It is thought that in the presence of convection a high combustion speed (υ approx> 10~6 cm s~(-1)) leads to rapid ignition (approx< 10 s) of all connected parts of the surface which have enough fuel for burning to convectively propagate. This is the prevalent burning mode at very low M's, where the colder envelope must accumulate more fuel before self-igniting. Most of the star is then convectively combustible at any one time, so that the recurrent thermal instability leads to quasi-periodic Type Ⅰ X-ray bursting. However, as M increases, the amount of fuel accumulated between instabilities is less and the slower, noncon-vective combustion that we have studied in detail becomes more prevalent. This breaks the burst periodicity, reduces the amount of fuel available for Type I X-ray bursts, and enhances the power in the VLFN. Our collation of EXOSAT observations of the brightest X-ray sources supports this theoretical inference. The nuclear burning luminosity is not uniform over the stellar surface and so may provide a handle on measuring, or constraining, the spin periods of these neutron stars. We thus provide " pulse-profiles" from the slow mode of combustion, which dramatically change on timescales ~ R/v ~ hours and may " de-cohere " the spin signal on shorter timescales comparable to a few radial thermal times (~ minutes). We also predict that the weaker X-ray bursts are produced by the combustion of a small fraction of the star, making detection of rotational modulations during bursts a distinct possibility. The low flux of these weak bursts may preclude this analysis for rapidly (P_s ~ ms) rotating neutron stars until the deployment of the X-Ray Timing Explorer and the USA Experiment.
机译:我们为高积聚速率的中子星确定了一种新的随时间变化的氦燃烧机制,并建议这种燃烧是低水平光度变化的起源(在10-10〜4 s的时间尺度上,被称为“极低频噪声”) ”(VLFN)由van der Klis和合作者进行)总是在最亮的X射线源中被检测到。以前只承认了两种核燃烧制度。当吸积率超过爱丁顿极限[M约(1-3)x 10〜(-8)太阳质量yr〜(-1)]时,吸积物稳定融合。在极低的M下,恒星的整个表面被快速传播的对流燃烧前沿以规则的间隔迅速燃烧(质量约为10 s),从而产生了准周期性的I型X射线爆发。我们发现,对于5 x 10〜(-10)太阳质量yr〜(-1)约<10〜(-8)太阳质量yr〜(-1)的观测范围,恒星表面的某些部分缓慢燃烧。在这些积聚速率下,局部热核不稳定性会引发火势,并在υ〜300 cm s〜(-1)处水平传播。火势在可燃表面周围蔓延,大约为增加下一次不稳定性所需要的燃料(〜10〜3-10〜4 s)传播,因此一次只有几场火势在燃烧,从而产生较大的发光度耀斑。核燃烧总是与时间有关,取决于次爱丁顿的局部增生率:局部斑经历循环循环,累积燃料数小时,直到燃料变得热不稳定或被附近的燃烧区域“点燃”为止。因此,整体燃烧的模式和由此产生的光度非常取决于核火在星体周围扩散的速度。据认为,在对流的情况下,较高的燃烧速度(υ大约> 10〜6 cm s〜(-1))会导致具有足够燃料的表面所有连接部分迅速点火(大约<10 s)。燃烧以对流传播。这是在非常低的M下的普遍燃烧模式,在这种模式下,较冷的外壳必须在自燃之前积聚更多的燃料。然后,大多数恒星在任何一次都可以对流燃烧,因此反复出现的热不稳定性会导致准周期Ⅰ型X射线爆裂。但是,随着M的增加,在不稳定性之间累积的燃料量会减少,并且我们已经详细研究的较慢的非对流燃烧变得更加普遍。这打破了爆发周期,减少了可用于I型X射线爆发的燃料量,并增强了VLFN中的功率。我们对最亮的X射线源的EXOSAT观测值的整理支持了这一理论推论。恒星表面的核燃烧发光度不均匀,因此可以为测量或限制这些中子星的自旋周期提供便利。因此,我们提供了慢速燃烧模式下的“脉冲分布图”,其在时标〜R / v〜小时内发生了显着变化,并可能在较短的时标上“分离”自旋信号,相当于几个径向热时间(〜分钟) 。我们还预测,较弱的X射线爆发是由一小部分恒星的燃烧产生的,这使得检测爆发期间旋转调制的可能性非常明显。这些弱爆发的低通量可能会妨碍对快速旋转(P_s〜ms)旋转的中子星的分析,直到部署X射线定时探测器和美国实验为止。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号