...
首页> 外文期刊>The Astrophysical journal >MAGNETIZED ACCRETION AND SPIN EVOLUTION IN CLASSICAL T TAURI STARS
【24h】

MAGNETIZED ACCRETION AND SPIN EVOLUTION IN CLASSICAL T TAURI STARS

机译:古典T陶里星的磁化吸积和自旋演化。

获取原文
获取原文并翻译 | 示例

摘要

The classical T Tauri stars' spin rates are observed roughly an order of magnitude smaller than the breakup rates, which is not easily explained by hydrodynamic accretion. Magnetic coupling between accretion disks and protostars may be an explanation for the slow spin rates. We examine whether the general idea of magnetic braking depends on particular model parameters and initial conditions. We show that magnetic braking is a viable explanation for slow spin rates, which depends only very weakly on the model parameters and initial conditions. A large number of combinations of plausible initial conditions lead to final spin rates less than ~1/10 of the corresponding break-up rates within ~10~6 yr. The final slow spin rates converge to a narrow range which does not depend on initial spin rates. When the magnetic field is amplified during contraction and spin-up, the required initial field strength is roughly (2-3) x 10~2 G, which depends weakly on the exact nature of amplification. If the field remains constant throughout evolution, the field strength is required to be at least greater than 500 G for sufficient magnetic braking. The inner regions of accretion disks are truncated by the stellar magnetospheres. The truncation radius, R_0, is correlated with the final stellar spin rate, Ω_*, The final truncation radii lie at 3-10 stellar radii (R_*) with an approximate correlation, R_0/R_* ≈ 14[1 — 0.075(Ω_*/Ω_☉)], where Ω_☉ is the solar rotation rate. The spin-truncation radius correlation can be an interesting diagnostic tool for the magnetic braking model.
机译:观测到的经典T Tauri恒星的自旋速率大约比破裂速率小一个数量级,这很难用流体动力吸积来解释。吸积盘和原恒星之间的磁耦合可能是自旋速度慢的一个解释。我们检查了电磁制动的总体思路是否取决于特定的模型参数和初始条件。我们表明,电磁制动是慢速旋转速度的可行解释,其仅在很小程度上取决于模型参数和初始条件。可能的初始条件的大量组合导致最终的自旋速率小于〜10〜6年内相应破裂速率的〜1/10。最终的慢速自旋速率收敛到一个窄范围,该范围不取决于初始自旋速率。当磁场在收缩和旋转加速过程中被放大时,所需的初始场强大约为(2-3)x 10〜2 G,这在很大程度上取决于放大的确切性质。如果磁场在整个演化过程中保持恒定,则要求磁场强度至少大于500 G,才能进行足够的电磁制动。吸积盘的内部区域被恒星磁层截断。截断半径R_0与最终恒星自旋速率Ω_*相关。最终截断半径位于3-10恒星半径(R_ *)上,具有近似相关性,R_0 / R_ *≈14 [1-0.075(Ω_ * /Ω_☉)],其中Ω_☉是太阳旋转速率。自旋截断半径相关性可能是电磁制动模型的有趣诊断工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号