...
首页> 外文期刊>Astronomische Nachrichten >Realisation of a fully-deterministic microlensing observing strategy for inferring planet populations†
【24h】

Realisation of a fully-deterministic microlensing observing strategy for inferring planet populations†

机译:完全确定的微透镜观测策略的推论实现†

获取原文
获取原文并翻译 | 示例

摘要

Within less than 15 years, the count of known planets orbiting stars other than the Sun has risen from none to more than 400 with detections arising from four successfully applied techniques: Doppler-wobbles, planetary transits, gravitational microlensing, and direct imaging. While the hunt for twin Earths is on, a statistically well-defined sample of the population of planets in all their variety is required for probing models of planet formation and orbital evolution so that the origin of planets that harbour life, like and including ours, can be understood. Given the different characteristics of the detection techniques, a complete picture can only arise from a combination of their respective results. Microlensing observations are well-suited to reveal statistical properties of the population of planets orbiting stars in either the Galactic disk or bulge from microlensing observations, but a mandatory requirement is the adoption of strictly-deterministic criteria for selecting targets and identifying signals. Here, we describe a fully-deterministic strategy realised by means of the ARTEMiS (Automated Robotic Terrestrial Exoplanet Microlensing Search) system at the Danish 1.54-m telescope at ESO La Silla between June and August 2008 as part of the MiNDSTEp (Microlensing Network for the Detection of Small Terrestrial Exoplanets) campaign, making use of immediate feedback on suspected anomalies recognized by the SIGNALMEN anomaly detector. We demonstrate for the first time the feasibility of such an approach, and thereby the readiness for studying planet populations down to Earth mass and even below, with ground-based observations. While the quality of the real-time photometry is a crucial factor on the efficiency of the campaign, an impairment of the target selection by data of bad quality can be successfully avoided. With a smaller slew time, smaller dead time, and higher through-put, modern robotic telescopes could significantly outperform the 1.54-m Danish, whereas lucky-imaging cameras could set new standards for high-precision follow-up monitoring of microlensing events (© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
机译:在不到15年的时间里,已知的绕太阳公转的行星的数量从无到有增加到400多个,其中有四项成功应用的技术进行了探测:多普勒摆动,行星过渡,引力微透镜和直接成像。在搜寻双生地球的过程中,需要探索出统计上明确定义的所有种类行星的样本,才能探测行星形成和轨道演化的模型,以便像我们(包括我们)这样拥有生命的行星的起源,可以理解。考虑到检测技术的不同特征,完整的图片只能从其各自结果的组合中得出。微透镜观测非常适合于从微透镜观测中揭示在银河系盘或凸出中环绕行星运行的恒星总数的统计特性,但强制性要求是采用严格确定性的标准来选择目标和识别信号。在这里,我们描述了2008年6月至2008年8月在ESO La Silla的丹麦1.54米望远镜上通过ARTEMiS(自动地球外行星自动微透镜搜索)系统实现的完全确定性策略,该系统是MiNDSTEp(用于探测小型地球系外行星)活动,利用SIGNALMEN异常探测器识别出的可疑异常的即时反馈。我们首次证明了这种方法的可行性,从而证明了通过地面观测研究低地球质量甚至更低质量的行星种群的准备。尽管实时测光的质量是战役效率的关键因素,但可以成功避免质量差的数据对目标选择造成的损害。斜摆时间更短,停滞时间更短,吞吐量更高,现代机器人望远镜可以大大胜过1.54 m丹麦文,而幸运成像相机可以为高精度跟踪微透镜事件提供新标准(© 2010 WILEY-VCH Verlag GmbH&Co.KGaA,Weinheim)

著录项

  • 来源
    《Astronomische Nachrichten 》 |2010年第7期| p.671-691| 共21页
  • 作者单位

    Niels Bohr Institutet, Københavns Universitet, Juliane Maries Vej 30, 2100 København Ø, Denmark|Centre for Star and Planet Formation, Københavns Universitet, Øster Voldgade 5-7, 1350 København Ø, Denmark;

    Department of Physics, The University of Auckland, Private Bag 92019, New Zealand;

    Niels Bohr Institutet, Københavns Universitet, Juliane Maries Vej 30, 2100 København Ø, Denmark;

    Niels Bohr Institutet, Københavns Universitet, Juliane Maries Vej 30, 2100 København Ø, Denmark|Armagh Observatory, College Hill, Armagh, BT61 9DG, UK;

    Universitdegli Studi di Salerno, Dipartimento di Fisica “E.R. Caianiello”, Via Ponte Don Melillo, 84085 Fisciano (SA), Italy|INFN, Gruppo Collegato di Salerno, Sezione di Napoli, Italy|Istituto Internazionale per gli Alti Studi Scientifici (IIASS), Via G. Pellegrino 19, 84019 Vietri sul Mare (SA), Italy;

    Niels Bohr Institutet, Københavns Universitet, Juliane Maries Vej 30, 2100 København Ø, Denmark;

    Universitdegli Studi di Salerno, Dipartimento di Fisica “E.R. Caianiello”, Via Ponte Don Melillo, 84085 Fisciano (SA), Italy|INFN, Gruppo Collegato di Salerno, Sezione di Napoli, Italy|Istituto Internazionale per gli Alti Studi Scientifici (IIASS), Via G. Pellegrino 19, 84019 Vietri sul Mare (SA), Italy;

    Astronomisches Rechen-Institut, Zentrum für Astronomie der Universitt Heidelberg (ZAH), Mönchhofstr. 12-14, 69120 Heidelberg, Germany|Departamento de Astronomía y Astrofísica, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, 7820436 Macul, Santiago, Chile;

    Deutsches SOFIA Institut, Universitt Stuttgart, Pfaffenwaldring 31, 70569 Stuttgart, Germany|SOFIA Science Center, NASA Ames Research Center, Mail Stop N211-3, Moffett Field CA 94035, USA;

    SUPA, University of St Andrews, School of Physics & Astronomy, North Haugh, St Andrews, KY16 9SS, UK;

    Institut für Astrophysik, Georg-August-Universitt, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany;

    Jodrell Bank Centre for Astrophysics, University of Manchester, Alan Turing Building, Manchester, M13 9PL, UK;

    Niels Bohr Institutet, Københavns Universitet, Juliane Maries Vej 30, 2100 København Ø, Denmark;

    SUPA, University of St Andrews, School of Physics & Astronomy, North Haugh, St Andrews, KY16 9SS, UK|Astronomisches Rechen-Institut, Zentrum für Astronomie der Universitt Heidelberg (ZAH), Mönchhofstr. 12-14, 69120 Heidelberg, Germany;

    Universitdegli Studi di Salerno, Dipartimento di Fisica “E.R. Caianiello”, Via Ponte Don Melillo, 84085 Fisciano (SA), Italy|INFN, Gruppo Collegato di Salerno, Sezione di Napoli, Italy|Istituto Internazionale per gli Alti Studi Scientifici (IIASS), Via G. Pellegrino 19, 84019 Vietri sul Mare (SA), Italy|Dipartimento di Ingegneria, Universitdel Sannio, Corso Garibaldi 107, 82100 Benevento, Italy;

    Bellatrix Astronomical Observatory, Via Madonna de Loco 47, 03023 Ceccano (FR), Italy;

    Department of Physics, Sharif University of Technology, P. O. Box 11155–9161, Tehran, Iran;

    Institut d'Astrophysique et de Géophysique, Allée du 6 Aoüt 17, Sart Tilman, Bât. B5c, 4000 Liège, Belgium;

    Universitdegli Studi di Salerno, Dipartimento di Fisica “E.R. Caianiello”, Via Ponte Don Melillo, 84085 Fisciano (SA), Italy|INFN, Gruppo Collegato di Salerno, Sezione di Napoli, Italy|Istituto Internazionale per gli Alti Studi Scientifici (IIASS), Via G. Pellegrino 19, 84019 Vietri sul Mare (SA), Italy;

    Max Planck Institute for Solar System Research, Max-Planck-Str. 2, 37191 Katlenburg-Lindau, Germany|European Southern Observatory, Alonso de Cordova 3107, Casilla 19001, Santiago 19, Chile;

    Astrophysics Group, Keele University, Staffordshire, ST5 5BG, UK;

    Las Cumbres Observatory Global Telescope Network, 6740B Cortona Dr, Goleta, CA 93117, USA;

    Institut d'Astrophysique et de Géophysique, Allée du 6 Aoüt 17, Sart Tilman, Bât. B5c, 4000 Liège, Belgium;

    Niels Bohr Institutet, Københavns Universitet, Juliane Maries Vej 30, 2100 København Ø, Denmark|INAF, Osservatorio Astronomico di Brera, 23807 Merate (LC), Italy;

    Las Cumbres Observatory Global Telescope Network, 6740B Cortona Dr, Goleta, CA 93117, USA|School of Mathematical Sciences, Queen Mary, University of London, London, E1 4NS, UK;

    Astronomisches Rechen-Institut, Zentrum für Astronomie der Universitt Heidelberg (ZAH), Mönchhofstr. 12-14, 69120 Heidelberg, Germany;

    Astronomisches Rechen-Institut, Zentrum für Astronomie der Universitt Heidelberg (ZAH), Mönchhofstr. 12-14, 69120 Heidelberg, Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    gravitational lensing; planetary systems;

    机译:引力透镜;行星系统;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号