...
首页> 外文期刊>Acta astronautica >Computation of optimal Mars trajectories via combined chemical/electrical propulsion, Part 3: Compromise solutions
【24h】

Computation of optimal Mars trajectories via combined chemical/electrical propulsion, Part 3: Compromise solutions

机译:通过化学/电气组合推进计算最佳火星轨迹,第3部分:妥协解决方案

获取原文
获取原文并翻译 | 示例
           

摘要

The success of the solar-electric ion engine powering the DS1 spacecraft has paved the way toward the use of low-thrust electrical engines in future planetary/interplanetary missions. Vis-a-vis a chemical engine, an electrical engine has a higher specific impulse, implying a possible decrease in propellant mass; however, the low-thrust aspect discourages the use of an electrical engine in the near-planet phases of a trip, since this might result in an increase in flight time. Therefore, a fundamental design problem is to find the best combination of chemical propulsion and electrical propulsion for a given mission, for example, a mission from Earth to Mars. With this in mind, this paper is the third of a series dealing with the optimization of Earth-Mars missions via the use of hybrid engines, namely the combination of high-thrust chemical engines for planetary flight and low-thrust electrical engines for interplanetary flight. We look at the deep-space interplanetary portion of the trajectory under rather idealized conditions. The two major performance indexes, the propellant mass and the flight time, are in conflict with one another for the following reason: any attempt at reducing the former causes an increase in the latter and vice versa. Therefore, it is natural to consider a compromise performance index involving the scaled values of the propellant mass and flight time weighted respectively by the compromise factor C and its complement 1 — C. We use the compromise factor as the parameter of the one-parameter family of compromise trajectories. Analyses carried out with the sequential gradient-restoration algorithm for optimal control problems lead to results which can be highlighted as follows. Thrust profile. Generally speaking, the thrust profile of the compromise trajectory includes three subarcs: the first subarc is characterized by maximum thrust in conjunction with positive (upward) thrust direction; the second subarc is characterized by zero thrust (coasting flight); the third subarc is characterized by maximum thrust in conjunction with negative (downward) thrust direction. Effect of the compromise factor. As the compromise factor increases, the propellant mass decreases and the flight time increases; correspondingly, the following changes in the thrust profile take place: (a) the time lengths of the first and third subarcs (powered phases) decrease slightly, meaning that thrust application occurs for shorter duration; also, the average value of the thrust direction in the first and third subarcs decreases, implying higher efficiency of thrust application wrt the spacecraft energy level; as a result, the total propellant mass decreases; (b) the time length of the second subarc (coasting) increases considerably, resulting in total time increase. Minimum time trajectory. If C = 0, the resulting minimum time trajectory has the following characteristics: (a) the time length of the coasting subarc reduces to zero and the three-subarc trajectory degenerates into a two-subarc trajectory; (b) maximum thrust is applied at all times and the thrust direction switches from upward to downward at midcourse. Minimum propellant mass trajectory. If C = 1, the resulting minimum propellant mass trajectory has the following characteristics: (a) the thrust magnitude has a bang-zero-bang profile; (b) for the powered subarcs, the thrust direction is tangent to the flight path at all times.
机译:为DS1航天器提供动力的太阳能离子发动机的成功为在未来的行星/行星际飞行中使用低推力电动发动机铺平了道路。相对于化学发动机,电动发动机具有更高的比冲,这意味着推进剂质量可能降低。但是,低推力方面不鼓励在旅行的近行星阶段使用电动发动机,因为这可能会导致飞行时间增加。因此,一个基本的设计问题是为给定任务(例如,从地球到火星的任务)找到化学推进和电气推进的最佳组合。考虑到这一点,本文是处理混合动力发动机优化地球-火星任务的系列文章的第三篇,即混合动力发动机用于行星飞行的高推力化学发动机和行星际飞行的低推力电子发动机的组合。我们看一下在相当理想的条件下轨迹的深空行星际部分。推进剂质量和飞行时间这两个主要性能指标彼此冲突,原因如下:降低前者的任何尝试都会导致后者的增加,反之亦然。因此,自然而然地考虑一种折中性能指数,其中包括分别由折中因子C及其补数1 – C加权的推进剂质量和飞行时间的比例值。我们使用折中因子作为一参数族的参数妥协轨迹。使用顺序梯度恢复算法对最佳控制问题进行分析得出的结果可以如下突出显示。推力轮廓。一般而言,折衷轨迹的推力曲线包括三个子弧:第一个子弧的特征是最大推力与正(向上)推力方向相结合;第二个子弧面的特征是零推力(飞行飞行);第三子弧的特征是最大推力和负(向下)推力方向。折衷因素的影响。随着折衷系数的增加,推进剂的质量减少,飞行时间增加。相应地,推力曲线发生以下变化:(a)第一和第三子弧(动力相)的时间长度略有减少,这意味着推力施加的持续时间较短;同样,第一和第三子弧中推力方向的平均值减小,这意味着在航天器能级上推力施加的效率更高;结果,总推进剂质量降低; (b)第二弧的时间长度(起伏)显着增加,导致总时间增加。最小时间轨迹。如果C = 0,则产生的最小时间轨迹具有以下特征:(a)滑行弧的时间长度减小为零,并且三苏巴克轨迹退化为两苏巴克轨迹; (b)始终施加最大推力,并且推力方向在中途从上切换到下。最小推进剂质量轨迹。如果C = 1,则得到的最小推进剂质量轨迹具有以下特征:(a)推力大小具有“零爆炸”的轮廓; (b)对于动力子弧,推力方向始终与飞行路径相切。

著录项

  • 来源
    《Acta astronautica》 |2005年第11期|p.829-840|共12页
  • 作者

    A. Miele; T. Wang; P.N. Williams;

  • 作者单位

    Aero-Astronautics Group, Rice University, 230 Ryon Building, 6100 Main Street, Houston, TX 77005-1892, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 航天(宇宙航行);
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号