首页> 外文期刊>Acta astronautica >Project Lyra: Catching 1I/'Oumuamua-Using Nuclear Thermal Rockets
【24h】

Project Lyra: Catching 1I/'Oumuamua-Using Nuclear Thermal Rockets

机译:Project Lyra:使用核热火箭捕获1i /'Oumuamua

获取原文
获取原文并翻译 | 示例
           

摘要

The first definite interstellar object observed in our solar system was discovered in October of 2017 and was subsequently designated 1I/'Oumuamua. In addition to its extrasolar origin, observations and analysis of this object indicate some unusual features which can only be explained by in-situ exploration. For this purpose, various spacecraft intercept missions have been proposed. Their propulsion schemes have been chemical, exploiting a Jupiter and Solar Oberth Maneuver (mission duration of 22 years) and also using Earth-based lasers to propel laser sails (1-2 years), both with launch dates in 2030. For the former, mission durations are quite prolonged and for the latter, the necessary laser infrastructure may not be in place by 2030. In this study Nuclear Thermal Propulsion (NTP) is examined for chasing interstellar objects after they have left the inner solar system, taking 1I/'Oumuamua as an example. NTP has yet to materialise as far as real missions are concerned, but due to its research and development in the US government sponsored Rover/NERVA programs, actually has a higher Technology Readiness Level (TRL) than laser propulsion. Various solid reactor core options are studied, using either engines directly derived from these programs, or more advanced options, like a proposed particle bed nuclear thermal rocket (NTR). With specific impulses at least twice those of chemical rockets, NTP opens the opportunity for much higher Delta V budgets, allowing simpler and more direct, time-saving trajectories to be exploited. For example a spacecraft with an upgraded NERVA/Pewee-class NTR travelling along an Earth-Jupiter-1I trajectory, would reach 1I/'Oumuamua within 14 years of a launch in 2031. The payload mass to 1I/'Oumuamua would be around 2.5 tonnes, but even larger masses and shorter mission durations can be achieved with some of the more advanced NTR options studied. In all 4 different proposed NTRs and 5 different trajectory scenarios are examined. It is concluded that NTP has the potential to increase payload size by an order of magnitude and trip durations reduced to 15 years compared to 20 years for chemical propulsion.
机译:在我们的太阳系中观察到的第一个明确的星际对象于2017年10月发现,随后被指定为1I /'OuMuamua。除了其额外的原点,对该目的的观察和分析表明了一些不寻常的功能,只能通过原位探索来解释。为此,已经提出了各种航天器拦截任务。他们的推进方案已经是化学,利用木星和太阳能Oberth机动(使命持续22岁),并使用基于地球的激光来推动激光帆(1-2岁),两者都在2030年。对于前者,使命持续时间非常长时间,对于后者,必须在2030年之前到达必要的激光基础设施。在这项研究中,检查核热动力推进(NTP)以在它们离开内太阳系统后追逐星际物体,服用1i /' oumuamua作为一个例子。正如真正的任务所关注的那样,NTP尚未实现,但由于其在美国政府赞助的流浪者/神经节方案中的研发,实际上具有比激光推进更高的技术准备水平(TRL)。研究了各种固体反应器核心选项,使用直接来自这些程序的发动机,或者更先进的选项,如提出的颗粒床核热火箭(NTR)。具有特定的脉冲至少两次化学火箭,NTP为更高的Delta V预算开辟了机会,允许利用更简单,更直接,节省时间的延长轨迹。例如,沿着地球-JUPITER-1I轨迹行驶的升级的神经级别的航天器将在2031年推出的14年内达到1I /'OUMUAMA。1I /'OUMUAMA的有效载荷质量将在2.5左右。吨,但甚至更大的群众和较短的任务持续时间可以通过研究的一些更高级的NTR选项来实现。在所有4个不同的建议的NTR和5个不同的轨迹方案都被检查。得出结论,NTP有可能按幅度和跳闸持续时间增加有效载荷规模,减少到<15年的化学推进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号