首页> 外文期刊>Acta astronautica >CubeSat constellation management using Ionic Liquid Electrospray Propulsion
【24h】

CubeSat constellation management using Ionic Liquid Electrospray Propulsion

机译:使用离子液体电喷雾推进的CubeSat星座管理

获取原文
获取原文并翻译 | 示例
           

摘要

The Space Propulsion Laboratory (SPL) of the Massachusetts Institute of Technology (MIT) is developing the Ion Electrospray Propulsion System (iEPS), designed to address a current need in CubeSat technology: miniaturized electric thrusters. These could be used for different applications, ranging from attitude control to interplanetary flights. In this work, performed together with the Space Systems Laboratory of the Costa Rica Institute of Technology (SETEC Lab), we explore a case study in which the iEPS is used for constellation management in Low Earth Orbit (LEO) when integrated in a 3U CubeSat. We analyze how a 180 separation in the Right Ascension of the Ascending Node (RAAN) between two CubeSats (SatA and SatB) starting in the same orbit can be achieved by modifying one of the spacecraft's orbital altitude, resulting in a difference in their rate of nodal precession (defined as the drift rate) due to the J2 effect, and therefore a difference in their relative RAAN. The method consists of SatB increasing its semi-major axis, drifting in a higher orbit with a lower drift rate, and returning to the original semi-major axis once the desired difference in RAAN in achieved relative to the other spacecraft. SatA will stay in its original orbit, using its thruster to compensate for orbital energy loss due to atmospheric drag, therefore demonstrating another application of iEPS for constellation management. Three different simulations were studied, defined as the minimum time trajectory, minimum propellant trajectory and a hybrid trajectory, consisting of reaching a higher altitude orbit, but actively changing the RAAN using the propulsion system instead of drifting. It was observed that the difference in this orbital element could be achieved using 85 g of propellant in as little as 164 days for the minimum time trajectory. The same difference could also be achieved using only 44 g of propellant in 245 days for the minimum propellant trajectory. Furthermore, the results of the hybrid trajectory showed that the goal could be achieved in 161 days, but using 158 g of propellant mass, demonstrating the benefit of using a drift orbit. The results proved the feasibility of implementing iEPS for constellation management using 3U CubeSats in LEO.
机译:麻省理工学院(MIT)的太空推进实验室(SPL)正在开发离子电喷雾推进系统(iEPS),旨在满足CubeSat技术的当前需求:小型电动推进器。这些可以用于不同的应用,从姿态控制到行星际飞行。在这项工作中,我们与哥斯达黎加理工学院的空间系统实验室(SETEC实验室)一起进行了一个案例研究,其中将iEPS集成到3U CubeSat中用于低地球轨道(LEO)的星座管理。我们分析了如何通过修改航天器的轨道高度之一来实现从同一轨道开始的两个立方体卫星(SatA和SatB)之间的升序节点(RAAN)的右提升180度分隔,从而导致它们的速度差异J2效应引起的节点进动(定义为漂移率),因此它们的相对RAAN有所不同。该方法包括SatB增加其半长轴,以较低的漂移率在较高的轨道上漂移,并且一旦相对于其他航天器实现了所需的RAAN差,便返回到原始的半长轴。 SatA将停留在其原始轨道上,使用其推进器来补偿由于大气阻力造成的轨道能量损失,因此证明了iEPS在星座管理中的另一种应用。研究了三种不同的模拟,分别是最小时间轨迹,最小推进剂轨迹和混合轨迹,包括到达更高的高度轨道,但使用推进系统而不是漂移来主动改变RAAN。观察到,在最短的时间轨迹内,在短短的164天之内使用85 g推进剂就可以实现这一轨道要素的差异。对于最小的推进剂弹道,在245天之内仅使用44克推进剂也可以实现相同的差异。此外,混合轨迹的结果表明,该目标可以在161天之内实现,但使用158 g推进剂质量,证明了使用漂移轨道的好处。结果证明了在LEO中使用3U CubeSats实施iEPS进行星座管理的可行性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号