首页> 外文期刊>Acta astronautica >A novel single thruster control strategy for spacecraft attitude stabilization
【24h】

A novel single thruster control strategy for spacecraft attitude stabilization

机译:一种用于航天器姿态稳定的新型单推力器控制策略

获取原文
获取原文并翻译 | 示例
           

摘要

Feasibility of achieving three axis attitude stabilization using a single thruster is explored in this paper. Torques are generated using a thruster orientation mechanism with which the thrust vector can be tilted on a two axis gimbal. A robust nonlinear control scheme is developed based on the nonlinear kinematic and dynamic equations of motion of a rigid body spacecraft in the presence of gravity gradient torque and external disturbances. The spacecraft, controlled using the proposed concept, constitutes an underactuated system (a system with fewer independent control inputs than degrees of freedom) with nonlinear dynamics. Moreover, using thruster gimbal angles as control inputs make the system non-affine (control terms appear nonlinearly in the state equation). This necessitates the control algorithms to be developed based on nonlinear control theory since linear control methods are not directly applicable. The stability conditions for the spacecraft attitude motion for robustness against uncertainties and disturbances are derived to establish the regions of asymptotic 3-axis attitude stabilization. Several numerical simulations are presented to demonstrate the efficacy of the proposed controller and validate the theoretical results. The control algorithm is shown to compensate for time-varying external disturbances including solar radiation pressure, aerodynamic forces, and magnetic disturbances; and uncertainties in the spacecraft inertia parameters. The numerical results also establish the robustness of the proposed control scheme to negate disturbances caused by orbit eccentricity.
机译:本文探讨了使用单个推进器实现三轴姿态稳定的可行性。使用推力器定向机制生成扭矩,借助该机制,推力矢量可以在两轴万向节上倾斜。基于刚体航天器在重力梯度转矩和外部干扰作用下的运动的非线性运动学和动力学方程,开发了一种鲁棒的非线性控制方案。使用提出的概念进行控制的航天器构成了一个具有非线性动力学的欠驱动系统(独立控制输入量少于自由度的系统)。此外,将推进器万向节角用作控制输入会使系统变得非仿射(控制项在状态方程中呈非线性出现)。由于线性控制方法不能直接应用,因此有必要基于非线性控制理论来开发控制算法。推导了航天器姿态运动对不确定性和干扰的鲁棒性的稳定条件,以建立渐近三轴姿态稳定区域。提出了几个数值模拟,以证明所提出的控制器的有效性并验证理论结果。该控制算法可以补偿时变的外部干扰,包括太阳辐射压力,空气动力和磁干扰。和航天器惯性参数的不确定性。数值结果还建立了所提出的控制方案的鲁棒性,以消除由轨道偏心率引起的干扰。

著录项

  • 来源
    《Acta astronautica》 |2013年第mayajuna期|55-67|共13页
  • 作者单位

    Department of Aerospace Engineering, Ryerson University, 350 Victoria St., Toronto, Ontario, Canada M5B 2K3;

    Department of Aerospace Engineering, Ryerson University, 350 Victoria St., Toronto, Ontario, Canada M5B 2K3;

    Department of Aerospace Engineering, Ryerson University, 350 Victoria St., Toronto, Ontario, Canada M5B 2K3;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    satellite attitude control; thruster; small satellites; nonlinear control;

    机译:卫星姿态控制;推力器;小型卫星;非线性控制;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号