首页> 外文期刊>Acta astronautica >MHD dissipative flow and heat transfer of Casson fluids due to metachronal wave propulsion of beating cilia with thermal and velocity slip effects under an oblique magnetic field
【24h】

MHD dissipative flow and heat transfer of Casson fluids due to metachronal wave propulsion of beating cilia with thermal and velocity slip effects under an oblique magnetic field

机译:在倾斜磁场下,由于跳动纤毛的异时波推进而产生的卡西流体的MHD耗散流和热传递具有热和速度滑移效应

获取原文
获取原文并翻译 | 示例
           

摘要

A theoretical investigation of magnetohydrodynamic (MHD) flow and heat transfer of electrically-conducting viscoplastic fluids through a channel is conducted. The robust Casson model is implemented to simulate viscoplastic behavior of fluids. The external magnetic field is oblique to the fluid flow direction. Viscous dissipation effects are included. The flow is controlled by the metachronal wave propagation generated by cilia beating on the inner walls of the channel. The mathematical formulation is based on deformation in longitudinal and transverse velocity components induced by the ciliary beating phenomenon with cilia assumed to follow elliptic trajectories. The model also features velocity and thermal slip boundary conditions. Closed-form solutions to the non-dimensional boundary value problem are obtained under physiological limitations of low Reynolds number and large wavelength. The influence of key hydrodynamic and thermo-physical parameters i.e. Hartmann (magnetic) number, Casson (viscoplastic) fluid parameter, thermal slip parameter and velocity slip parameter on flow characteristics are investigated. A comparative study is also made with Newtonian fluids (corresponding to massive values of plastic viscosity). Stream lines are plotted to visualize trapping phenomenon. The computations reveal that velocity increases with increasing the magnitude of Hartmann number near the channel walls whereas in the core flow region (center of the channel) significant deceleration is observed. Temperature is elevated with greater Casson parameter, Hartmann number, velocity slip, eccentricity parameter, thermal slip and also Brinkmann (dissipation) number. Furthermore greater Casson parameter is found to elevate the quantity and size of the trapped bolus. In the pumping region, the pressure rise is reduced with greater Hartmann number, velocity slip, and wave number whereas it is enhanced with greater cilia length. (C) 2016 IAA. Published by Elsevier Ltd. All rights reserved.
机译:进行了磁流体动力学(MHD)流动和导电粘塑性流体通过通道的传热的理论研究。实施鲁棒的卡森模型可模拟流体的粘塑性行为。外部磁场与流体流动方向倾斜。包括粘性耗散效应。流量由纤毛在通道内壁上拍打产生的同步波传播控制。数学公式是基于睫毛跳动现象引起的纵向和横向速度分量的变形,其中纤毛假定遵循椭圆形轨迹。该模型还具有速度和热滑移边界条件。在低雷诺数和大波长的生理限制下,获得了无量纲边值问题的闭式解。研究了关键的水动力和热物理参数,即哈特曼(磁)数,卡森(粘塑性)流体参数,热滑移参数和速度滑移参数对流动特性的影响。还对牛顿流体进行了比较研究(对应于大量的塑料粘度值)。绘制流线以可视化捕获现象。计算表明,速度随着通道壁附近哈特曼数的增加而增加,而在岩心流动区域(通道中心)观察到明显的减速。随Casson参数,Hartmann数,速度滑移,偏心率参数,热滑移以及Brinkmann(耗散)数增加,温度升高。此外,发现更大的卡森参数会提高捕获的弹丸的数量和大小。在泵送区域中,压力升高随Hartmann数,速度滑移和波数增加而减小,而纤毛长度越长则压力升高就越大。 (C)2016 IAA。由Elsevier Ltd.出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号