首页> 外文期刊>Astrobiology >Enceladus Plume Structure and Time Variability: Comparison of Cassini Observations
【24h】

Enceladus Plume Structure and Time Variability: Comparison of Cassini Observations

机译:土卫二羽状结构和时间变异性:卡西尼观测资料的比较

获取原文
获取原文并翻译 | 示例
       

摘要

During three low-altitude (99, 66, 66 km) flybys through the Enceladus plume in 2010 and 2011, Cassini's ion neutral mass spectrometer (INMS) made its first high spatial resolution measurements of the plume's gas density and distribution, detecting in situ the individual gas jets within the broad plume. Since those flybys, more detailed Imaging Science Subsystem (ISS) imaging observations of the plume's icy component have been reported, which constrain the locations and orientations of the numerous gas/grain jets. In the present study, we used these ISS imaging results, together with ultraviolet imaging spectrograph stellar and solar occultation measurements and modeling of the three-dimensional structure of the vapor cloud, to constrain the magnitudes, velocities, and time variability of the plume gas sources from the INMS data. Our results confirm a mixture of both low and high Mach gas emission from Enceladus' surface tiger stripes, with gas accelerated as fast as Mach 10 before escaping the surface. The vapor source fluxes and jet intensities/densities vary dramatically and stochastically, up to a factor 10, both spatially along the tiger stripes and over time between flyby observations. This complex spatial variability and dynamics may result from time-variable tidal stress fields interacting with subsurface fissure geometry and tortuosity beyond detectability, including changing gas pathways to the surface, and fluid flow and boiling in response evolving lithostatic stress conditions. The total plume gas source has 30% uncertainty depending on the contributions assumed for adiabatic and nonadiabatic gas expansion/acceleration to the high Mach emission. The overall vapor plume source rate exhibits stochastic time variability up to a factor similar to 5 between observations, reflecting that found in the individual gas sources/jets.
机译:在2010年和2011年通过土卫二羽流进行的三个低空飞行(99、66、66 km)飞越期间,卡西尼号的离子中性质谱仪(INMS)首次对羽流的气体密度和分布进行了高空间分辨率的测量,并在现场探测了羽状区域内的单个气体喷射器。自从飞越以来,已经报道了羽状冰冷成分的更详细的成像科学子系统(ISS)成像观察结果,这限制了许多气体/颗粒喷射的位置和方向。在本研究中,我们使用了这些ISS成像结果,紫外线成像光谱仪的恒星和太阳掩星测量以及对蒸气云的三维结构的建模,来限制烟气来源的大小,速度和时间变化性从INMS数据。我们的结果证实了从土卫二表面虎纹发出的低和高马赫气体的混合物,气体逃逸到表面之前的加速速度高达10马赫。蒸气源通量和射流强度/密度在沿老虎条纹的空间上以及在两次飞越观测之间随时间变化时,随机变化很大,高达10倍。这种复杂的空间变异性和动力学性可能是由时变的潮汐应力场与地下裂缝几何形状和曲折性相互作用所致,超出了可检测范围,包括改变了通往地面的气体通道,以及响应不断发展的岩石静应力条件而发生的流体流动和沸腾。烟气总量具有30%的不确定性,具体取决于绝热和非绝热气体膨胀/加速对高马赫排放的贡献。两次观测之间的总蒸气羽流源速率呈现出随机时间变异性,最高可达类似于5的因数,反映了在各个气体源/喷口中发现的变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号