首页> 外文期刊>Astrobiology >Atmospheric Constraints on the Surface UV Environment of Mars at 3.9Ga Relevant to Prebiotic Chemistry
【24h】

Atmospheric Constraints on the Surface UV Environment of Mars at 3.9Ga Relevant to Prebiotic Chemistry

机译:与益生元化学有关的3.9Ga火星表面紫外线环境的大气约束

获取原文
获取原文并翻译 | 示例
       

摘要

Recent findings suggest that Mars may have been a clement environment for the emergence of life and may even have compared favorably to Earth in this regard. These findings have revived interest in the hypothesis that prebiotically important molecules or even nascent life may have formed on Mars and been transferred to Earth. UV light plays a key role in prebiotic chemistry. Characterizing the early martian surface UV environment is key to understanding how Mars compares to Earth as a venue for prebiotic chemistry. Here, we present two-stream, multilayer calculations of the UV surface radiance on Mars at 3.9Ga to constrain the surface UV environment as a function of atmospheric state. We explore a wide range of atmospheric pressures, temperatures, and compositions that correspond to the diversity of martian atmospheric states consistent with available constraints. We include the effects of clouds and dust. We calculate dose rates to quantify the effect of different atmospheric states on UV-sensitive prebiotic chemistry. We find that, for normative clear-sky CO2-H2O atmospheres, the UV environment on young Mars is comparable to young Earth. This similarity is robust to moderate cloud cover; thick clouds ((cloud)100) are required to significantly affect the martian UV environment, because cloud absorption is degenerate with atmospheric CO2. On the other hand, absorption from SO2, H2S, and dust is nondegenerate with CO2, meaning that, if these constituents build up to significant levels, surface UV fluence can be suppressed. These absorbers have spectrally variable absorption, meaning that their presence affects prebiotic pathways in different ways. In particular, high SO2 environments may admit UV fluence that favors pathways conducive to abiogenesis over pathways unfavorable to it. However, better measurements of the spectral quantum yields of these pathways are required to evaluate this hypothesis definitively. Key Words: Radiative transferOrigin of lifeMarsUV radiationPrebiotic chemistry. Astrobiology 17, 687-708.
机译:最近的发现表明,火星可能是生命出现的良好环境,甚至在这方面可以与地球相比。这些发现使人们重新认识了以下假设:益生元重要分子甚至新生生命可能已在火星上形成并转移到地球。紫外线在益生元化学中起关键作用。表征火星早期的表面紫外线环境是了解火星如何与地球作为益生元化学场所进行比较的关键。在这里,我们提出了在3.9Ga下火星上的UV表面辐射的两流,多层计算,以将表面UV环境约束为大气状态的函数。我们探索了与大火星大气状态的多样性相对应并符合可用限制条件的大气压,温度和成分。我们包括云和灰尘的影响。我们计算剂量率以量化不同大气状态对紫外线敏感的益生元化学的影响。我们发现,对于规范的晴空CO2-H2O大气,年轻火星上的紫外线环境与年轻地球相当。这种相似性对于中等云量的覆盖是有力的。需要厚厚的云((cloud)100)才能显着影响火星的紫外线环境,因为云的吸收会随着大气中的二氧化碳而退化。另一方面,从SO2,H2S和粉尘的吸收不会随CO2退化,这意味着,如果这些成分积累到显着水平,则可以抑制表面紫外线通量。这些吸收剂具有光谱可变的吸收,这意味着它们的存在以不同的方式影响益生元途径。特别是,高SO2环境可能允许紫外线通量,该通量有利于有益于生物发生的途径,而不是不利于它的途径。但是,需要更好地测量这些途径的光谱量子产率才能确定性地评估该假设。关键词:辐射转移生命起源火星紫外线辐射益生元化学。天体生物学17,687-708。

著录项

  • 来源
    《Astrobiology》 |2017年第8期|687-708|共22页
  • 作者单位

    Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA;

    Harvard Univ, Harvard Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA|Harvard Univ, Dept Earth & Planetary Sci, 20 Oxford St, Cambridge, MA 02138 USA;

    Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 13:04:44

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号