首页> 外文期刊>Astrobiology >Necessary, but Not Sufficient: Raman Identification of Disordered Carbon as a Signature of Ancient Life
【24h】

Necessary, but Not Sufficient: Raman Identification of Disordered Carbon as a Signature of Ancient Life

机译:必要但不充分:无序碳的拉曼识别是古代生活的标志

获取原文
获取原文并翻译 | 示例
           

摘要

To identify microscopic particles as actual fossil material, it would be useful to have a means of unambiguously recognizing which carbonaceous deposits found in rocks are residues from once-living organisms (i.e., biogenic material). Those residues consist of many different, mostly aromatic (i.e., benzene ring-containing), C-O-H-dominated molecules, and typically are called kerogens. Raman microprobe spectroscopy can be applied to minute samples of ancient kerogens either isolated from their host rocks or in situ in thin section. The Raman spectra generated by monochromatic blue or green laser excitation (e.g., at 488, 514, 532 nm) typically show only generic spectral features indicative of discontinuous arrays of condensed benzene rings (i.e., structures referred to as "disordered carbonaceous material"). Thus, despite the complex chemistry of kerogens and the expected presence of H, O, and N, the Raman spectra typically do not show any evidence of functional groups, such as CH, CH_2, CH_3, CO, and CN. Moreover, the same kind of Raman spectral signature as is obtained from kerogens also is obtained from many other poorly ordered carbonaceous materials that arise through nonbiological processes, such as in situ heating of organic or inorganic compounds (whether or not they are of biological origin), metamorphic mobilization of preexisting carbon compounds, and high-temperature precipitation from hydrothermal solutions. Thus, neither a Raman spectrum, nor a Raman image derived from such spectra, definitively can identify a sample as "kerogen," but only as "disordered carbonaceous material." Clearly, the fact that small, opaque grains consist of disordered carbonaceous material is necessary, but not sufficient, to prove them to be residues of cellular material and, thus, biogenic.
机译:为了将微观颗粒鉴定为实际的化石材料,有用的方法是明确地识别岩石中发现的哪些碳质沉积物是曾经生活的生物(即生物起源材料)的残留物。这些残基由许多不同的,主要是芳族的(即含苯环的),C-O-H为主的分子组成,通常被称为干酪根。拉曼显微探针光谱技术可用于从其宿主岩石中分离或在薄片中原位分离的古代干酪根的微小样品。由单色蓝色或绿色激光激发(例如,在488、514、532nm处)产生的拉曼光谱通常仅显示指示稠合苯环的不连续阵列(即,被称为“无序碳质材料”的结构)的一般光谱特征。因此,尽管干酪根的化学复杂并且预期存在H,O和N,但拉曼光谱通常没有显示任何官能团的证据,例如CH,CH_2,CH_3,CO和CN。此外,与从干酪根获得的拉曼光谱特征相同的拉曼光谱特征也可从许多其他通过非生物过程产生的不良有序碳质物质中获得,例如原位加热有机或无机化合物(无论它们是否具有生物起源)。 ,先前存在的碳化合物的变质动员以及热液中的高温沉淀。因此,拉曼光谱和从这些光谱得出的拉曼图像都不能确定地将样品识别为“干酪根”,而只能识别为“无序碳质材料”。显然,小的,不透明的颗粒由无序的碳质材料组成的事实是必要的,但不足以证明它们是细胞材料的残留物,因此是生物成因的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号