...
首页> 外文期刊>Astrobiology >Eukaryotic Colonization of Micrometer-Scale Cracks in Rocks: A 'Microfluidics' Experiment Using Naturally Weathered Meteorites from the Nullarbor Plain, Australia
【24h】

Eukaryotic Colonization of Micrometer-Scale Cracks in Rocks: A 'Microfluidics' Experiment Using Naturally Weathered Meteorites from the Nullarbor Plain, Australia

机译:岩石中微米级裂纹的真核定植:使用来自澳大利亚纳拉伯平原的自然风化陨石的“微流控”实验

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The advent of microfluidics has revolutionized the way we understand how microorganisms propagate through microporous spaces. Here, we apply this understanding to the study of how endolithic environmental microorganisms colonize the interiors of sterile rock. The substrates used for our study are stony meteorites from the Nullarbor Plain, Australia; a semiarid limestone karst that provides an ideal setting for preserving meteorites. Periodic flooding of the Nullarbor provides a mechanism by which microorganisms and exogenous nutrients may infiltrate meteorites. Our laboratory experiments show that environmental microorganisms reach depths greater than 400 μm by propagating through existing brecciation, passing through cracks no wider than the diameter of a resident cell (i.e., ∼5 μm). Our observations are consistent with the propagation of these eukaryotic cells via growth and cell division rather than motility. The morphology of the microorganisms changed as a result of propagation through micrometer-scale cracks, as has been observed previously for bacteria on microfluidic chips. It has been suggested that meteorites could have served as preferred habitats for microorganisms on ancient Mars. Based on our results, the depths reached by terrestrial microorganisms within meteorites would be sufficient to mitigate against the harmful effects of ionizing radiation, such as UV light, in Earth's deserts and potentially on Mars, if similar processes of microbial colonization had once been active there. Thus, meteorites landing in ancient lakes on Mars, that later dried out, could have been some of the last inhabited locations on the surface, serving as refugia before the planet's surface became inhospitable. Finally, our observations suggest that terrestrial microorganisms can colonize very fine cracks within meteorites (and potentially spaceships and rovers) on unexpectedly short timescales, with important implications for both recognition of extraterrestrial life in returned geological samples and planetary protection.
机译:微流体技术的出现彻底改变了我们了解微生物如何通过微孔空间传播的方式。在这里,我们将这种理解应用于内生环境微生物如何在无菌岩石内部定殖的研究。我们用于研究的底物是来自澳大利亚纳拉伯平原的石陨石。半干旱石灰岩喀斯特,为保存陨石提供了理想的环境。纳拉伯的定期淹没提供了一种机制,微生物和外源养分可以通过该机制渗入陨石。我们的实验室实验表明,环境微生物通过现有的角砾岩传播而到达的深度大于400μm,穿过的裂隙不超过驻留细胞的直径(即约5μm)。我们的观察结果与这些真核细胞通过生长和细胞分裂而不是运动性的繁殖是一致的。微生物的形态是通过微米级裂缝传播的结果而改变的,正如以前在微流控芯片上观察到的细菌那样。有人认为,陨石可能是古代火星上微生物的首选栖息地。根据我们的结果,如果曾经在微生物沙漠中进行过类似的微生物定殖过程,那么陨石中陆地微生物所达到的深度将足以缓解电离辐射(例如紫外线)对地球沙漠和火星的有害影响。 。因此,陨石降落在火星上古老的湖泊中,后来变干了,这可能是地表上最后有人居住的地方,在地球表面变得荒凉之前充当了避难所。最后,我们的观察结果表明,陆地微生物可以在意想不到的短时间内定居在陨石(以及潜在的宇宙飞船和漫游者)内的非常细小的裂缝上,这对于识别返回的地质样品中的陆地外生命和保护行星都具有重要意义。

著录项

  • 来源
    《Astrobiology》 |2020年第3期|364-374|共11页
  • 作者

  • 作者单位

    School of Earth Atmosphere and Environment Monash University|Biological and Environmental Sciences University of Stirling;

    School of Earth and Environmental Sciences The University of Queensland;

    School of Earth Atmosphere and Environment Monash University|Department of Earth and Atmospheric Sciences University of Alberta;

    School of Earth Atmosphere and Environment Monash University;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Nullarbor Plain; Meteorite; Endolith; First colonizer; Microfluidics; Eukaryotes;

    机译:纳拉伯平原;陨石Endolith;第一殖民者;微流体;真核生物;

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号