首页> 外文期刊>Astrobiology >Metabolic Processes Preserved as Biosignatures in Iron-Oxidizing Microorganisms: Implications for Biosignature Detection on Mars
【24h】

Metabolic Processes Preserved as Biosignatures in Iron-Oxidizing Microorganisms: Implications for Biosignature Detection on Mars

机译:保留为铁氧化微生物中生物签名的代谢过程:对火星生物签名检测的影响。

获取原文
获取原文并翻译 | 示例
       

摘要

Iron-oxidizing bacteria occupy a distinct environmental niche. These chemolithoautotrophic organisms require very little oxygen (when neutrophilic) or outcompete oxygen for access to Fe(II) (when acidophilic). The utilization of Fe(II) as an electron donor makes them strong analog organisms for any potential life that could be found on Mars. Despite their importance to the elucidation of early life on, and potentially beyond, Earth, many details of their metabolism remain unknown. By using on-line thermochemolysis and gas chromatography–mass spectrometry (GC-MS), a distinct signal for a low-molecular-weight molecule was discovered in multiple iron-oxidizing isolates as well as several iron-dominated environmental samples, from freshwater and marine environments and in both modern and older iron rock samples. This GC-MS signal was neither detected in organisms that did not use Fe(II) as an electron donor nor present in iron mats in which organic carbon was destroyed by heating. Mass spectral analysis indicates that the molecule bears the hallmarks of a pterin-bearing molecule. Genomic analysis has previously identified a molybdopterin that could be part of the electron transport chain in a number of lithotrophic iron-oxidizing bacteria, suggesting one possible source for this signal is the pterin component of this protein. The rock samples indicate the possibility that the molecule can be preserved within lithified sedimentary rocks. The specificity of the signal to organisms requiring iron in their metabolism makes this a novel biosignature with which to investigate both the evolution of life on ancient Earth and potential life on Mars.
机译:铁氧化细菌占据独特的环境环境。这些化石自养生物需要很少的氧气(嗜中性时)或竞争性的氧气才能获得Fe(II)(嗜酸时)。 Fe(II)作为电子供体的利用使它们成为火星上任何潜在生命的强大类似生物。尽管它们对于阐明地球乃至地球以外的早期生命的重要性,但其代谢的许多细节仍然未知。通过使用在线热化学分解和气相色谱-质谱(GC-MS),在淡水和淡水中的多个铁氧化分离物以及一些铁占主导的环境样品中发现了低分子量分子的独特信号。海洋环境以及现代和较旧的铁岩石样本。在未使用Fe(II)作为电子供体的生物中也未检测到此GC-MS信号,也未在未通过加热破坏有机碳的铁垫中存在该GC-MS信号。质谱分析表明该分子具有带蝶呤的分子的特征。基因组分析以前已经鉴定出了钼蝶呤,该钼蝶呤可能是许多石化铁氧化细菌中电子传输链的一部分,表明该信号的一种可能来源是该蛋白的蝶呤成分。岩石样品表明分子可以保留在石化沉积岩中的可能性。信号对代谢过程中需要铁的生物的特异性使其成为一种新颖的生物特征,可用于研究古代地球上生命的演化和火星上的潜在生命。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号