首页> 外文期刊>ASHRAE Transactions >Energy and Exergy Analysis of Integrating compound parabolic collectors (CPC) with Lithium Bromide (Li-Br) Absorption Chiller for Building Heating and Cooling to Achieve Net Zero Buildings
【24h】

Energy and Exergy Analysis of Integrating compound parabolic collectors (CPC) with Lithium Bromide (Li-Br) Absorption Chiller for Building Heating and Cooling to Achieve Net Zero Buildings

机译:混合抛物线收集器(CPC)与溴化锂(Li-Br)吸收式制冷机进行建筑物供热和制冷以实现净零建筑物的能量和火用分析

获取原文
获取原文并翻译 | 示例
           

摘要

According to the Department of Energy, Building Energy Data Book (2009), commercial and residential buildings in the U.S. consume 39.9 % of the primary energy and contribute 39 % of the total CO_2 emissions. In the operation of buildings, 41.8 % of building energy consumption is provided for building cooling, heating, domestic hot water, and ventilation for commercial buildings, while in residential buildings, this percentage increases to 58%. In order to achieve net zero buildings, significant effort should be focused on the research and development of building integrated renewable energy technologies. In this paper, a solar thermal driven absorption cooling and heating technology is presented, and then analyzed for providing cooling and heating to a building, the Intelligent Workplace South Zone at Carnegie Mellon University. The system includes 30 m~2 of proposed external compound parabolic concentrator with evacuated tubes (XCPC), a 16 kW (4 tons) two-stage lithium bromide (Li-Br) absorption chiller for cooling and a 20 kW heat exchanger for heating. A compound parabolic collector can absorb both direct and diffuse sunlight and does not need tracking devices or controls. The XCPC heat transfer model is presented and integrated with a two-stage absorption chiller model in Engineering Equation Solver (EES). With a focus on building cooling, the temperature, enthalpy, entropy, mass flow rate, and mass fraction of lithium bromide in the solar absorption system are presented in steady state operation. The exergy destruction in each component is calculated. From the results, the exergy destructions for the solar collector, generator, absorber, and heat exchangers are significantly higher than those in evaporator, condenser and expansion valves. The overall energy and exegetic efficiency are calculated.
机译:根据能源部《建筑能源数据手册》(2009年),美国的商业和住宅建筑消耗一次能源的39.9%,并贡献39%的CO_2排放量。在建筑物的运营中,建筑物能源消耗的41.8%用于建筑物的制冷,供暖,生活热水和商业建筑物的通风,而在住宅建筑物中,这一百分比增加到58%。为了实现净零建筑物,应集中精力研究和发展建筑物可再生能源综合技术。本文介绍了一种太阳能热吸收吸收式制冷和供暖技术,然后对其进行了分析,以便为卡内基梅隆大学的智能工作区南区提供制冷和供暖。该系统包括30 m〜2拟议的带有排空管(XCPC)的外部复合抛物面浓缩器,用于冷却的16 kW(4吨)两级溴化锂(Li-Br)吸收式冷却器和用于加热的20 kW热交换器。复合抛物线收集器可以吸收直接和漫射的阳光,不需要跟踪设备或控件。提出了XCPC传热模型,并与工程方程求解器(EES)中的两级吸收式冷却器模型集成。着重于建筑物的制冷,介绍了太阳能吸收系统在稳态运行下的温度,焓,熵,质量流率和溴化锂的质量分数。计算每个成分的火用破坏。从结果可以看出,太阳能收集器,发电机,吸收器和热交换器的火用破坏明显高于蒸发器,冷凝器和膨胀阀的火用破坏。计算总能量和效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号