...
首页> 外文期刊>ASHRAE Transactions >Quantifying the Residential Demand Response Participation of Dynamic Building Envelopes
【24h】

Quantifying the Residential Demand Response Participation of Dynamic Building Envelopes

机译:量化动态建筑信封的住宅需求响应参与

获取原文
获取原文并翻译 | 示例

摘要

Buildings comprise a large portion of global end-use energy, and within this, usage patterns tend to result in large peaks based on occupancy and weather. These peaks significantly stress the electrical grid via necessary infrastructure upgrades and causing expensive, high emittinggenerators to ramp up and stay on. This results in the waste, or curtailing, of electricity generated by renewable sources. Load-shifting induced by time-of-use (TOU) electric utility pricing structures, create a demand-response relationship that has an economic benefit for the consumer and the grid as a whole. In this work, a simplified numerical model of a single-family residential heating and cooling system was created to demonstrate the ability of dynamic building envelopes as a part of energy-flexible buildings of the future to participate in this demand-response market. Results illustrate that the best design case can glean 26.3% cost savings above baseline and a 5.9% reduction in monthly peak load using the Boulder, CO time-of -use pricing structure. With hourly optimization, this improved to 35.6% cost savings with the same reduction in monthly peak load. Optimal solar heat gain coefficient (SHGC) and beat transmission (U-value) values vary between 3 main "modes ", and this varied allocation illustrates inherently that a dynamic envelope contributes to more optimal building typology settings. With model predictive control, building thermal capacitance becomes available for energy storage, which was not previously considered by hourly optimization. A simplified RC model using MATLAB Simulink showed up to 15.2% yearly cost savings and 4.6% reduction in peak loading moving from a one hour (same as hourly optimization) to eight hour horizon period. A more complex Energy Plus model developed as a residential protoype building showed, at best, up to 2.5% peak load reduction with a 0.3% increase in yearly costs. Future work will aim to improve the modeling assumptions and explore tuning strategies for this multi-objective optimization problem.
机译:建筑物包括大部分全球最终使用能量,在此内,使用模式往往会导致基于占用和天气的大峰。这些峰值通过必要的基础设施升级显着强调电网,并导致昂贵的高发射器升级并保持继续。这导致可再生来源产生的电力或缩减电力。通过使用时间(TOU)电效用定价结构引起的负载换档,创造了对消费者和整体网格具有经济效益的需求响应关系。在这项工作中,创建了一种单独的住宅加热和冷却系统的简化数值模型,以展示动态建筑信封作为未来的能量柔和建筑物的一部分,以参与这一需求 - 反应市场。结果说明,最佳设计案例可以收集26.3%的成本节约在基线上方,每月峰值负荷减少5.9%,使用巨石,共同使用的定价结构。随着每小时优化,这种节省的节省量大于35.6%,每月峰值负荷相同。最佳的太阳能热增益系数(SHGC)和节拍传输(U值)值在3个主要的“模式”之间变化,并且这种变化的分配本质上示出了动态信封有助于更优化的建筑类型设置。利用模型预测控制,建筑热电容可用于储能,以前未考虑每小时优化。使用MATLAB Simulink的简化RC模型显示出高达15.2%的成本节约,峰值加载减少4.6%,从一小时(每小时优化)移动到8小时的地平期。作为住宅Protoype大楼开发的更复杂的能量加模型,最多可达2.5%的峰值负荷降低,每年增加0.3%。未来的工作旨在提高建模假设,探索这种多目标优化问题的调整策略。

著录项

  • 来源
    《ASHRAE Transactions 》 |2020年第2期| 510-518| 共9页
  • 作者单位

    Department of Civil Environmental and Architectural Engineering University of Colorado Boulder;

    Department of Civil Environmental and Architectural Engineering University of Colorado Boulder;

    Department of Civil Environmental and Architectural Engineering University of Colorado Boulder;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号