首页> 外文期刊>ASHRAE Transactions >Effects of System Materials toward the Breakdown of Lubricants and Low-GWP Refrigerants
【24h】

Effects of System Materials toward the Breakdown of Lubricants and Low-GWP Refrigerants

机译:系统材料对润滑剂和低全球升温潜能值制冷剂分解的影响

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Process chemicals, including cleaners, degreasers, coolants, sealants, metalworking fluids, brazing fluxes, rust inhibitors, and bearing slushing compounds, may be added directly to air-conditioning or refrigeration systems or may be left as residue after an attempt has been made to remove them from a system component. Some of these chemicals have been shown to cause degradation of refrigerants and/or compressor lubricants, and their compatibility with the refrigerant/lubricant systems needs to be determined to ensure the long-term reliability of air-conditioning and refrigeration equipment. As the heating, ventilation, air-conditioning, and refrigeration (HVAC&R) industry transitions to lower global warming potential (GWP) refrigerants, many research and development programs have been focused on hydrofluorolefins (HFOs), which have been evaluated as alternative refrigerants to hydrochlorofluorocarbons (HCFC) and hydrofluorocarbons (HFC). Previous research on the compatibility of process chemicals with HFC refrigerants and polyolester (POE) lubricants provides a sound knowledge base for the evaluation of HFO/POE systems. This research project was conducted to determine the chemical reactivity of process chemicals in HFO/POE systems and their impact on the performance and reliability of HVAC&R systems, with the following objectives: 1. Determine the effects of the selected process chemicals on the chemical stability of HFO/POE. 2. Compare the chemical reactivity of process chemicals in HFO/POE to that of the same chemicals in R-134a/POE. 3. Identify the process chemicals that would require careful consideration for use in HFO/POE systems due to their high reactivity. The process chemicals selected for testing included: poly-oxyethylene nonyl phenol ether, propylene glycol, benzotri-azole, sodium gluconate, boric acid, ethylene diamine tetraacetic acid (EDTA), iron (III)phosphate dihydrate, potassium hydroxide, sodium molybdate, sodium paratoluene sulfonate, triethanolamine, zinc chloride, potassium fluoride, potassium hydrogen fluoride, trisodium phosphate dodecahy-drate, neutral calcium alkylaryl sulfonate, sodium nitrite, ethanolamine, sulfamic acid, sodium carbonate, neodecanoic acid, chloroparaffin, ferric chloride, hydroxyethyl cellulose, and sodium palmitate. These chemicals are currently in use or being considered for use with the HFO refrigerant systems. They were screened using sealed tube tests according to ANSI/ ASHRAE Standard 97, Sealed Glass Tube Method to Test the Chemical Stability of Materials for Use within Refrigerant System (ASHRAE 2007). The test matrix included 1 low-GWP refrigerant blend of R-32/R-1234yf/R-l234ze at 33.3 weight-percent each, I non-additized ISO 22 POE lubricant, 25 chemical species,2 concentrations for each chemical (0.1 and 1.0 weight-percent based on lubricant weight), one aging temperature [175℃ (347℉)] and 1 aging time (14 days). The results from this study showed that many of the chemicals found in process fluids would react with theR-134a/POE and (HFO Blend)/POE systems. Chemical reactions resulted in changes in a number of properties, such as darker lubricant color, cloudiness, deposit, film formation, darker metal color, dullness, corrosion, increased total acid number (TAN), increased total organic acid (TOA), presence of metals in solution, presence of reaction products (such as fluoride ions in the [HFO blend]/POE system). This study showed that the extent of reaction depends on the chemical and its concentration, while previous studies with R-134a/POE showed that it also depends on the aging temperature and the aging time. However, the decision of whether a chemical is compatible for use in a refrigeration system is highly subjective and depends on the user, the application, and the equipment.
机译:包括清洁剂,脱脂剂,冷却剂,密封剂,金属加工液,钎焊剂,防锈剂和轴承防污剂在内的过程化学品可直接添加到空调或制冷系统中,或在尝试进行清洁后可保留为残留物。从系统组件中删除它们。这些化学物质中的一些已被证明会导致制冷剂和/或压缩机润滑剂的降解,因此需要确定它们与制冷剂/润滑剂系统的相容性,以确保空调和制冷设备的长期可靠性。随着取暖,通风,空调和制冷(HVAC&R)行业过渡到全球变暖潜能(GWP)较低的制冷剂,许多研究和开发计划都集中在氢氟烯烃(HFO)上,氢氟烯烃已被评估为氢氯氟烃的替代制冷剂。 (HCFC)和氢氟碳化合物(HFC)。先前有关工艺化学品与HFC制冷剂和多元醇酯(POE)润滑剂的相容性的研究为评估HFO / POE系统提供了坚实的知识基础。进行此研究项目的目的是确定过程化学品在HFO / POE系统中的化学反应性及其对HVAC&R系统性能和可靠性的影响,其目标如下:1.确定所选过程化学品对HFO / RPO系统化学稳定性的影响。 HFO / POE。 2.比较HFO / POE中的过程化学品与R-134a / POE中相同化学品的化学反应性。 3.确定由于其高反应性而需要仔细考虑在HFO / POE系统中使用的过程化学品。选择用于测试的工艺化学品包括:聚氧乙烯壬基酚醚,丙二醇,苯并三唑,葡萄糖酸钠,硼酸,乙二胺四乙酸(EDTA),磷酸铁(III)二水合物,氢氧化钾,钼酸钠,钠对甲苯磺酸盐,三乙醇胺,氯化锌,氟化钾,氟化氢钾,十二烷基磷酸三钠,中性烷基芳基磺酸钙,亚硝酸钠,乙醇胺,氨基磺酸,碳酸钠,新癸酸,氯烷烃,氯化铁,羟乙基纤维素和钠棕榈酸酯。这些化学物质目前正在使用中或正在考虑与HFO制冷剂系统一起使用。使用根据ANSI / ASHRAE标准97的密封管测试,密封玻璃管方法(用于测试制冷系统中使用的材料的化学稳定性)对它们进行筛选。测试基质包括1种低全球升温潜能值的R-32 / R-1234yf / R-l234ze制冷剂混合物,每种混合物的重量百分比为33.3%,I未添加ISO 22 POE润滑剂,25种化学物质,每种化学物质2种浓度(0.1和以润滑剂的重量为基准,为1.0重量%),1个老化温度[175℃(347℉)]和1个老化时间(14天)。这项研究的结果表明,过程流体中发现的许多化学物质都会与R-134a / POE和(HFO Blend)/ POE系统发生反应。化学反应导致许多性质发生变化,例如较深的润滑剂颜色,混浊,沉积,成膜,较深的金属颜色,钝度,腐蚀,总酸值(TAN)增加,总有机酸(TOA)增加,溶液中的金属,存在反应产物(例如[HFO混合物] / POE系统中的氟离子)。这项研究表明,反应程度取决于化学物质及其浓度,而先前对R-134a / POE的研究表明,反应程度还取决于老化温度和老化时间。但是,决定化学品是否适合在制冷系统中使用是非常主观的,并且取决于用户,应用程序和设备。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号