...
首页> 外文期刊>Applied Surface Science >Anti-oxidation mechanism and interfacial chemistry of BN@CaCO_3-SiO_2 microcapsule-added sodium borate melt on the sliding steel surfaces at elevated temperatures
【24h】

Anti-oxidation mechanism and interfacial chemistry of BN@CaCO_3-SiO_2 microcapsule-added sodium borate melt on the sliding steel surfaces at elevated temperatures

机译:BN @ Caco_3-SiO_2微胶囊加入的抗氧化机理和界面化学在升高温度下滑动钢表面上的加入硼酸钠熔体

获取原文
获取原文并翻译 | 示例
           

摘要

This study reports the chemistry underpinning the superior anti-oxidation and lubrication of the BN@CaCO3SiO2 microcapsule-added sodium borate melt at 930 degrees C by surface-interface tailoring. Under static oxidation at 930 degrees C, sodium borate reacts to the microcapsule's shell that generates the sodium-calcium borosilicate melt and releases the h-BN nanosheets. Interfacial characterizations reveal a negligible corrosion attack and superior antioxidation of the sodium-calcium borosilicate compared to sodium borate (by - 86%) which is due to the weak mobility of sodium in the melt network. Under sliding conditions at 930 degrees C, friction modifies profoundly the interfacial reactivity of the sodium-calcium borosilicate melt toward the oxide surfaces. An intermixing effect and the friction-induced heat accelerates the high-temperature reactions between the melt and the spinel oxides on the sliding surfaces that result in the formation of the plate-like non-layered M-type CaCrxFe12-xO19 hexaferrite. A synergy between the h-BN nanosheets, the grain-refinement of the sliding surfaces, and the intercalation of the M-type hexaferrite at the sliding interfaces contribute to a superior friction reduction (by - 70%) compared to sodium borate melt under boundary conditions with high contact pressures. These findings highlight a potential strategy for achieving excellent lubricity, superior anti-oxidation, and reduced corrosion from the melt lubricants at high temperatures.
机译:本研究报告了通过表面界面剪裁在930℃下,化学在930℃下施加高抗氧化和BN @ CaCO3SiO2微胶囊加入的硼酸钠熔体的润滑。在930℃的静氧化下,硼酸钠反应于微胶囊的壳体,产生硼硅酸钙熔体并释放H-BN纳米晶片。与硼酸钠(BY-86%)相比,界面特征揭示了渗透钠硅酸钙的渗透和优异的抗氧化,这是由于熔体网络中钠的弱迁移率。在930℃的滑动条件下,摩擦将硼硅酸钙熔融融化的界面反应性朝向氧化物表面进行了深刻的改变。混合效应和摩擦诱导的热量将熔体和尖晶石氧化物之间的高温反应加速到导致板状非层状M型CacrxFe12-XO19六己二酯的形成。与硼酸钠熔体下边界下的硼酸钠熔体相比,H-BN纳米片剂,滑动表面的晶粒细化和滑动界面的晶粒细化和M型六发射石的插入有助于接触压力高的条件。这些发现突出了实现优异的润滑性,优异的抗氧化和在高温下熔体润滑剂的腐蚀的潜在策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号