...
首页> 外文期刊>Applied Surface Science >Optimization of catalyst formation conditions for synthesis of carbon nanotubes using Taguchi method
【24h】

Optimization of catalyst formation conditions for synthesis of carbon nanotubes using Taguchi method

机译:Taguchi法优化碳纳米管合成催化剂的形成条件

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

A growth of Carbon Nanotubes (CNTs) suffers many difficulties in finding optimum growth parameters, reproducibility and mass-production, related to the large number of parameters influencing synthesis process. Choosing the proper parameters can be a time consuming process, and still may not give the optimal growth values. One of the possible solutions to decrease the number of the experiments, is to apply optimization methods to the design of the experiment parameter matrix. In this work, Taguchi method of designing experiments is applied to optimize the formation of iron catalyst during annealing process by analyzing average roughness and size of particles. The annealing parameters were: annealing time (t(AN)), hydrogen flow rate (f(H2)), temperature (T-AN) and argon flow rate (f(Ar)). Plots of signal-to-noise ratios showed that temperature and annealing time have the highest impact on final results of experiment. For more detailed study of the influence of parameters, the interaction plots of tested parameters were analyzed. For the final evaluation, CNT forests were grown on silicon substrates with AlOx/Fe catalyst by thermal chemical vapor deposition method. Based on obtained results, the average diameter of CNTs was decreased by 67% and reduced from 9.1 nm (multi-walled CNTs) to 3.0 nm (single-walled CNTs). (C) 2016 Elsevier B.V. All rights reserved.
机译:碳纳米管(CNTs)的生长在寻找最佳生长参数,可再现性和大量生产方面遇到许多困难,这与影响合成过程的大量参数有关。选择适当的参数可能是一个耗时的过程,但仍可能无法提供最佳的增长值。减少实验数量的可能解决方案之一是将优化方法应用于实验参数矩阵的设计。在这项工作中,采用Taguchi设计实验方法通过分析平均粗糙度和颗粒尺寸来优化退火过程中铁催化剂的形成。退火参数为:退火时间(t(AN)),氢气流速(f(H2)),温度(T-AN)和氩气流速(f(Ar))。信噪比图表明,温度和退火时间对实验的最终结果影响最大。为了更详细地研究参数的影响,分析了测试参数的交互作用图。为了进行最终评估,使用AlOx / Fe催化剂通过热化学气相沉积法在硅基板上生长CNT林。根据获得的结果,CNT的平均直径减少了67%,从9.1 nm(多壁CNT)减小到3.0 nm(单壁CNT)。 (C)2016 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Applied Surface Science》 |2016年第15期|425-435|共11页
  • 作者单位

    Kochi Univ Technol, Dept Elect & Photon Syst Engn, Tosayamada Cho, Kochi 7828502, Japan;

    Kochi Univ Technol, Dept Elect & Photon Syst Engn, Tosayamada Cho, Kochi 7828502, Japan|Kochi Univ Technol, Ctr Nanotechnol, Tosayamada Cho, Kochi 7828502, Japan;

    Kochi Univ Technol, Dept Elect & Photon Syst Engn, Tosayamada Cho, Kochi 7828502, Japan|Kochi Univ Technol, Ctr Nanotechnol, Tosayamada Cho, Kochi 7828502, Japan;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Carbon nanotube; Taguchi method; Catalyst; Synthesis; Optimization;

    机译:碳纳米管;Taguchi法;催化剂;合成;优化;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号