...
首页> 外文期刊>Applied Surface Science >Rapid localized deactivation of self-assembled monolayers by propagation-controlled laser-induced plasma and its application to self-patterning of electronics and biosensors
【24h】

Rapid localized deactivation of self-assembled monolayers by propagation-controlled laser-induced plasma and its application to self-patterning of electronics and biosensors

机译:传播控制激光诱导等离子体对自组装单分子膜的快速局部失活及其在电子和生物传感器自构图中的应用

获取原文
获取原文并翻译 | 示例
           

摘要

HighlightsPrecise deactivation of self-assembled monolayers (SAMs) using propagation-controlled laser-induced plasma.Fast, flexible, and cost-effective SAM patterning method.Wide scalability from sub- to hundreds micron for various functional surfaces.Application to the self-patterning of electronics and biosensors.AbstractWe present a novel laser-induced surface treatment process to rapidly control the spatial wettabilities of various functional solutions with submicron to micron resolutions. Ultrathin hydrophobic self-assembled monolayers (SAMs) that little absorb typical laser lights due to short penetration depth were selectively deactivated by instantaneous interaction with laser-induced metallic plasmas. The spatial region of the deactivated SAM, which corresponds to process resolution, is adjustable by controlling the spatial propagation of the plasma. This method leads to the parallel formation of hydrophilic functional solutions on glass substrates with a minimum resolution on the submicron scale. To show its feasibility in device engineering fields, this method was applied to the cost-effective fabrication of electronics and biosensors. Rapid self-patterning of electronic and biological functional solutions (silver nanoparticle solution and streptavidin protein solution) was successfully realized by selective deactivation of two different SAMs (tridecafluoro-1,1,2,2-tetrahydrooctyltrichlorosilane (FOTS) for electronics and the hetero-hybrid SAM (octadecyltrichlorosilane (OTS)/2-[methoxy(polyethyleneoxy)propyl] trichlorosilane (PEG)) for biosensors). As a result, this method can be exploited for the rapid and low-cost fabrication of various thin film devices such as electronics, biosensors, energy, displays, and photonics.
机译: 突出显示 使用传播控制的激光诱导等离子体精确地自组装单层(SAM)失活。 < ce:list-item id =“ lsti0010”> 快速,灵活且经济高效的SAM图案化方法。 适用于各种功能表面的从亚微米到数百微米的可扩展性。 适用于自修复程序电子和生物传感器的研究。 摘要 我们提出了一种新颖的激光诱导表面处理工艺,以亚微米至微米的分辨率快速控制各种功能性溶液的空间可湿性。通过与激光诱导的金属等离子体的瞬时相互作用,由于渗透深度短而几乎不吸收典型激光的超薄疏水性自组装单分子层(SAMs)被选择性地钝化。失活的SAM的空间区域(对应于过程分辨率)可通过控制等离子体的空间传播进行调整。该方法导致在亚微米级的最小分辨率下在玻璃基板上平行形成亲水性功能溶液。为了证明其在设备工程领域的可行性,该方法被应用于具有成本效益的电子和生物传感器制造中。电子和生物功能溶液(银纳米颗粒溶液和链霉亲和素蛋白溶液)的快速自构图是通过选择性停用两种不同的电子器件SAM(三氟甲氟-1,1,2,2-四氢辛基三氯硅烷(FOTS))和杂原子而成功实现的。混合SAM(用于生物传感器的十八烷基三氯硅烷(OTS)/ 2- [甲氧基(聚乙氧基)丙基]三氯硅烷(PEG))。结果,该方法可用于各种电子设备,生物传感器,能源,显示器和光子学等各种薄膜设备的快速低成本制造。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号