...
首页> 外文期刊>Applied Surface Science >Mussel byssus-inspired engineering of synergistic nanointerfacial interactions as sacrificial bonds into carbon nanotube-reinforced soy proteinanofibrillated cellulose nanocomposites: Versatile mechanical enhancement
【24h】

Mussel byssus-inspired engineering of synergistic nanointerfacial interactions as sacrificial bonds into carbon nanotube-reinforced soy proteinanofibrillated cellulose nanocomposites: Versatile mechanical enhancement

机译:贻贝byssus启发的协同纳米界面相互作用工程,作为牺牲键进入碳纳米管增强的大豆蛋白/纳米纤维化的纤维素纳米复合材料:多功能的机械增强

获取原文
获取原文并翻译 | 示例
           

摘要

Graphical abstractDisplay OmittedHighlightsBiomimetic functionalization of carbon nanotubes is required to engineer strong yet sacrificial units into a chemically cross-linked SPI network.Synergistic interfacial interactions of covalent and coordinative bonding effectively dissipate energy from matrix to fillers.Simultaneous increases of 195% and 156% in tensile strength and toughness of bio-inspired nanocomposite was obtained.AbstractAchieving flexible and stretchable biobased nanocomposites combining high strength and toughness is still a very challenging endeavor. Herein, we described a novel and versatile biomimetic design for tough and high-performance TEMPO-oxidized nanofibrillated cellulose (TONFC)/soy protein isolate (SPI) nanocomposites, which are triggered by catechol-mimetic carbon nanotubes (PCT) and iron ions (Fe(III)) to yield a strong yet sacrificial metal-ligand motifs into a chemically cross-linked architecture network. Taking advantage of self-polymerization of catechol-inspired natural tannic acid, PCT nanohybrid was prepared through adhering reactive poly-(tannic acid) (PTA) layer onto surfaces of carbon nanotubes via a simple dip-coating process. The high-functionality PCT induced the formation of the metal-ligand bonds through the ionic coordinates between the catechol groups in PCT and –COOH groups of TONFC skeleton with Fe(III) mediation that mimicked mussel byssus. Upon stretching, this tailored TONFC-Fe(III)-catechol coordination bonds served as sacrificial bonds that preferentially detach prior to the covalent network, which gave rise to efficient energy dissipation that the nanocomposites integrity was survived. As a result of these kind of synergistic interfacial interactions (sacrificial and covalent bonding), the optimal nanocomposite films processed high tensile strength (ca. 11.5MPa), large elongation (ca. 79.3%), remarkable toughness (ca. 6.9MJm−3), and favorable water resistance as well as electrical conductivity. The proposed bioinspired strategy for designing plant protein-based materials enables control over their mechanical performance through the synergistic engineering of sacrificial bonds into the composite interface.
机译: 图形摘要 < ce:simple-para>省略显示 突出显示 碳的仿生功能化必须使用纳米管才能将坚固而牺牲的单元改造成化学交联的SPI网络。 •• Syn共价键和配位键的相互作用界面有效地将能量从基质耗散到填充剂。 生物启发的纳米复合材料的拉伸强度和韧性同时增加了195%和156%。 摘要 实现灵活且具有高强度和韧性的可拉伸生物基纳米复合材料仍然是一项非常具有挑战性的工作。在这里,我们描述了一种新颖而通用的仿生设计,用于设计由邻苯二酚模拟碳纳米管(PCT)和铁离子(Fe)触发的坚韧且高性能的TEMPO氧化的纳米原纤化纤维素(TONFC)/大豆蛋白分离物(SPI)纳米复合材料。 (III))将强大而牺牲的金属-配体基序生成化学交联的建筑网络。利用邻苯二酚启发的天然单宁酸的自聚合优势,通过简单的浸涂工艺将反应性聚(鞣酸)(PTA)层粘附到碳纳米管的表面,从而制备了PCT纳米杂化物。高功能性PCT通过模仿贻贝的Fe(III)介导的TONFC骨架的PCT和–COOH基团的PCT邻苯二酚基团和–COOH基团之间的离子坐标诱导了金属-配体键的形成。拉伸后,这种定制的TONFC-Fe(III)-邻苯二酚配位键用作牺牲键,在共价网络之前优先分离,从而产生了有效的能量耗散,纳米复合材料的完整性得以保留。由于这种类型的协同界面相互作用(牺牲性和共价键合),最佳的纳米复合材料薄膜具有较高的拉伸强度(约11.5MPa),较大的伸长率(约79.3%),显着的韧性(约6.9MJm -3 ),并具有良好的耐水性和导电性。拟议的以生物启发为基础的设计基于植物蛋白质的材料的策略,可以通过将牺牲性键协同工程到复合界面中来控制其机械性能。

著录项

  • 来源
    《Applied Surface Science》 |2018年第15期|1086-1100|共15页
  • 作者单位

    MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University,Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University;

    MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University,Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University;

    MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University,Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University;

    MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University,Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University;

    MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University,Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University;

    MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University,Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Mussel byssus-inspired; Synergistic interfacial interactions; Sacrificial bonds; Soy protein; Nanofibrillated cellulose; Mechanically strengthening and toughening;

    机译:贻贝byssus启发;协同界面相互作用;牺牲键;大豆蛋白;纳米原纤化纤维素;机械增强和增韧;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号