...
首页> 外文期刊>Applied Surface Science >Fabrication of modified g-C3N4 nanorod/Ag3PO4 nanocomposites for solar-driven photocatalytic oxygen evolution from water splitting
【24h】

Fabrication of modified g-C3N4 nanorod/Ag3PO4 nanocomposites for solar-driven photocatalytic oxygen evolution from water splitting

机译:修饰的g-C3N4纳米棒/ Ag3PO4纳米复合材料的制备,用于水分解产生的太阳能驱动的光催化氧气

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Semiconductor-based photocatalysis has been considered as one of the most effective techniques to achieve the conversion of clean and sustainable sunlight to solar fuel, in which the construction of novel solar-driven photocatalytic systems is the key point. Here, we report initially the synthesis of modified graphitic carbon nitride (g-C3N4) nanorods via the calcination of intermediates obtained from the co-polymerization of precursors, and the in-situ hybridization of Ag3PO4 with as-prepared modified gC(3)N(4) to produce g-C3N4 nanorod/Ag3PO4 composite materials. The diameter of modified rod-like g-C3N4 materials is determined to be around 1 mu m. Subsequently the morphological features, crystal and chemical structures of the assembled g-C3N4 nanorod/Ag3PO4 composites were systematically investigated by SEM, XRD, XPS, UV-vis diffuse reflectance spectra (DRS). Furthermore, the use of as-prepared composite materials as the catalyst for photocatalytic oxygen evolution from water splitting was studied. The oxygen-generating results showed that the composite photocatalyst modified with 600 mg rod-like g-C3N4 demonstrates 2.5 times higher efficiency than that of bulk Ag3PO4. The mechanism behind the enhancement in the oxygen-evolving activity is proposed on the basis of in-situ electron spin resonance (ESR) measurement as well as theoretical analysis. The study provides new insights into the design and development of new photocatalytic composite materials for energy and environmental applications. (C) 2017 Elsevier B.V. All rights reserved.
机译:基于半导体的光催化被认为是将清洁和可持续的阳光转化为太阳能的最有效技术之一,其中新型太阳能驱动的光催化系统的构建是关键。在这里,我们首先报告通过煅烧从前体的共聚获得的中间体,以及将Ag3PO4与制备的修饰的gC(3)N原位杂交,来合成修饰的石墨碳氮化物(g-C3N4)纳米棒。 (4)生产g-C3N4纳米棒/ Ag3PO4复合材料。改性的棒状g-C3N4材料的直径确定为约1μm。随后通过SEM,XRD,XPS,UV-vis漫反射光谱(DRS)系统地研究了组装好的g-C3N4纳米棒/ Ag3PO4复合材料的形貌特征,晶体和化学结构。此外,研究了所制备的复合材料作为水分解产生光催化氧的催化剂。产生氧气的结果表明,用600 mg棒状g-C3N4改性的复合光催化剂的效率是散装Ag3PO4的2.5倍。在原位电子自旋共振(ESR)测量和理论分析的基础上,提出了提高放氧活性的机制。该研究为用于能源和环境应用的新型光催化复合材料的设计和开发提供了新见解。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号