...
首页> 外文期刊>Applied Physics >Numerical simulation and experimental research on fused-coating additive manufacturing of Sn63Pb37 thin-walled structures
【24h】

Numerical simulation and experimental research on fused-coating additive manufacturing of Sn63Pb37 thin-walled structures

机译:Sn63Pb37薄壁结构熔覆增材制造的数​​值模拟与实验研究

获取原文
获取原文并翻译 | 示例
           

摘要

Metal fused-coating additive manufacturing of Sn63Pb37 with single-track two-layer was performed. A 3D thermal FVM model has been developed to calculate the temperature field and solidification morphology of deposited layers. Results of numerical calculation, experimental of the micrographs and morphologies were presented, discussed and checked. The influences of the melt temperature and substrate temperature on the re-melted depth were analyzed. Physical values such as the ratio of overlap width and surface waviness were selected as indicators for the interlayer bond strength and macroscopic surface quality of copper deposits. The results suggest that when the temperatures of melt and substrate are 200 degrees C and 60 degrees C, respectively, the re-melted depth is close to zero because the heat from the liquid metal is still not hot enough to melt the surface of the previously deposited layers. As the temperature of melt and substrate increases, the re-melted depth reaches 0.5 mm or more, the collapse of previous deposited layers may occur due to the increased heat and the build-up of mass during deposition. A range of re-melted depth 0.2-0.5 mm is optimal for surface roughness and bonding strength of deposited layers. Moreover, the surface waviness was characterized by the difference of the maximum crest and minimum trough. When the temperatures of melt and substrate are 260 degrees C and 110 degrees C, respectively, and layer thickness 1.2 mm, surface waviness has the maximal value of 0.23 mm.
机译:进行具有单道两层的Sn63Pb37的金属熔敷涂覆增材制造。已经开发了3D热FVM模型,以计算沉积层的温度场和凝固形态。给出了数值计算,显微照片和形态实验的结果,进行了讨论和检查。分析了熔体温度和基体温度对重熔深度的影响。选择诸如重叠宽度和表面波纹度之比的物理值作为铜沉积层间结合强度和宏观表面质量的指标。结果表明,当熔融金属和基材的温度分别为200摄氏度和60摄氏度时,重熔深度接近于零,因为来自液态金属的热量仍然不够热,无法熔化先前的金属表面。沉积层。随着熔体和基板温度的升高,重新熔深达到0.5 mm或更大,由于沉积过程中热量的增加和质量的增加,先前的沉积层可能会塌陷。对于表面粗糙度和沉积层的结合强度而言,0.2至0.5毫米的重熔深度范围是最佳的。此外,表面波纹度的特征在于最大波峰和最小波谷的差异。当熔体和基底的温度分别为260℃和110℃,并且层厚度为1.2mm时,表面波纹度的最大值为0.23mm。

著录项

  • 来源
    《Applied Physics》 |2019年第12期|875.1-875.10|共10页
  • 作者单位

    Xi An Jiao Tong Univ State Key Lab Mfg Syst Engn Xian 710049 Shaanxi Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号