...
首页> 外文期刊>Applied Physics >Electron paramagnetic resonance studies on manganite Pr_(0.)5Sr_(0.5)Mn_(1-x)Ga_XO_3 (x = 0 and 0.05)
【24h】

Electron paramagnetic resonance studies on manganite Pr_(0.)5Sr_(0.5)Mn_(1-x)Ga_XO_3 (x = 0 and 0.05)

机译:锰Pr_(0.)5Sr_(0.5)Mn_(1-x)Ga_XO_3(x = 0和0.05)的电子顺磁共振研究

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper, we present the investigations of electron paramagnetic resonance on perovskite manganite Pr_(0.5)Sr_(0.5)Mno_3 and Ga-doped Pr_(0.5)Sr_(0.5)Mn_(0.95)Ga_(0.05)O_3. The temperature dependent paramagnetic resonance spectra parameters (effective g-factor, peak-to-peak linewidth ΔHpp and double integrated intensities) have been used to study the paramagnetic spin correlations and spin dynamics. The gradual increase of effective g-factor is attributed to the presence of orbital ordering above T_C. The model fittings of temperature dependent double integrated intensities reveal Arrhenius law is appropriate for describing Pr_(0.5)Sr_(0.5)Mn_(0.95)Ga_(0.05)O_3 instead of Pr_(0.5)Sr_(0.5)MnO_3 system. As for Pr_(0.5)Sr_(0.5)MnO_3, the broadening of linewidth with the temperature increase origins from the contribution of small polaron hopping in the PM regime. However, as for Pr_(0.5)Sr_(0.5)Mn_(0.95)Ga_(0.05)O_3, the broadening of EPR linewidth can be understood with the spin-lattice relaxation mechanism.
机译:本文介绍了钙钛矿锰矿Pr_(0.5)Sr_(0.5)Mno_3和Ga掺杂Pr_(0.5)Sr_(0.5)Mn_(0.95)Ga_(0.05)O_3的电子顺磁共振的研究。温度相关的顺磁共振光谱参数(有效g因子,峰峰线宽ΔHpp和双积分强度)已用于研究顺磁自旋相关性和自旋动力学。有效g因子的逐渐增加归因于高于T_C的轨道排序的存在。与温度有关的双重积分强度的模型拟合表明,阿雷尼乌斯定律适用于描述Pr_(0.5)Sr_(0.5)Mn_(0.95)Ga_(0.05)O_3而不是Pr_(0.5)Sr_(0.5)MnO_3系统。对于Pr_(0.5)Sr_(0.5)MnO_3,线宽随温度升高而变宽的原因是PM模式中小极化子跳跃的贡献。但是,对于Pr_(0.5)Sr_(0.5)Mn_(0.95)Ga_(0.05)O_3,可以通过自旋晶格弛豫机制来理解EPR线宽的加宽。

著录项

  • 来源
    《Applied Physics》 |2013年第2期|397-402|共6页
  • 作者单位

    Department of Applied Physics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;

    High Magnetic Field Laboratory, Chinese Academy of Sciences,Hefei 230031, China;

    Department of Material Engineering, China Jiliang University,Hangzhou 310018, China;

    High Magnetic Field Laboratory, Chinese Academy of Sciences,Hefei 230031, China;

    High Magnetic Field Laboratory, Chinese Academy of Sciences,Hefei 230031, China;

    Department of Applied Physics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;

    Department of Applied Physics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;

    Department of Applied Physics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;

    Department of Applied Physics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;

    Institute of Magnetic and Electronic Materials, College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310023, China;

    High Magnetic Field Laboratory, Chinese Academy of Sciences,Hefei 230031, China,Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China;

    High Magnetic Field Laboratory, Chinese Academy of Sciences,Hefei 230031, China,Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号