首页> 外文期刊>Applied Physics >Growth of non-polar Zn_(1-x)Mg_xO thin films with different Mg contents on r-plane sapphire substrates by plasma-assisted molecular beam epitaxy
【24h】

Growth of non-polar Zn_(1-x)Mg_xO thin films with different Mg contents on r-plane sapphire substrates by plasma-assisted molecular beam epitaxy

机译:等离子体辅助分子束外延在r面蓝宝石衬底上生长不同Mg含量的非极性Zn_(1-x)Mg_xO薄膜

获取原文
获取原文并翻译 | 示例
       

摘要

We report the growth and characterization of a series of non-polar Zn_(1-x)Mg_xO thin films with different Mg contents, which have been prepared on r-plane sapphire substrates by plasma-assisted molecular beam epitaxy. Structural properties are anisotropic and surfaces of films show stripes running along the c-axis direction. The films exhibit atomically smooth surface with the minimal root mean square surface roughness of 0.36 nm. Non-polar Zn_(1-x)MgxO thin film is much easier to obtain pure a-plane single crystal orientation when Mg content is high. The quality of the non-polar Zn_(1-x)Mg_xO thin films is evidenced by X-ray diffraction (XRD) rocking curves full-width at half-maximum of 1,350 arcsec for the (1120) reflection and 1,760 arcsec for the (1011) reflection, respectively. Room temperature photoluminescence peak shifts monotonously from 3.29 to 3.56 eV as Mg content increases from 0 to 0.13. Alloying with Mg is found to widen the bandgap energy of the ZnO.
机译:我们报告了生长和表征一系列具有不同的镁含量的非极性Zn_(1-x)Mg_xO薄膜,这些薄膜是通过等离子辅助分子束外延在r面蓝宝石衬底上制备的。结构特性是各向异性的,薄膜表面显示出沿c轴方向延伸的条纹。该膜展现出原子光滑的表面,最小均方根表面粗糙度为0.36 nm。当Mg含量高时,非极性Zn_(1-x)MgxO薄膜更容易获得纯a面单晶取向。非极性Zn_(1-x)Mg_xO薄膜的质量由X射线衍射(XRD)摇摆曲线证明,(1120)反射的半峰全宽为1,350弧秒,而对于(( 1011)反射。随着Mg含量从0增加到0.13,室温光致发光峰从3.29 eV单调移动。发现与Mg合金化可扩大ZnO的带隙能。

著录项

  • 来源
    《Applied Physics》 |2014年第4期|1979-1983|共5页
  • 作者单位

    Department of Materials Science and Engineenng, Cyrus Tang Center for Sensor Materials and Applications, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, People's Republic of China;

    Department of Materials Science and Engineenng, Cyrus Tang Center for Sensor Materials and Applications, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, People's Republic of China;

    Department of Materials Science and Engineenng, Cyrus Tang Center for Sensor Materials and Applications, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, People's Republic of China;

    Department of Materials Science and Engineenng, Cyrus Tang Center for Sensor Materials and Applications, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, People's Republic of China;

    Department of Materials Science and Engineenng, Cyrus Tang Center for Sensor Materials and Applications, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, People's Republic of China;

    Department of Materials Science and Engineenng, Cyrus Tang Center for Sensor Materials and Applications, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, People's Republic of China;

    Department of Materials Science and Engineenng, Cyrus Tang Center for Sensor Materials and Applications, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, People's Republic of China;

    Department of Materials Science and Engineenng, Cyrus Tang Center for Sensor Materials and Applications, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, People's Republic of China;

    Department of Materials Science and Engineenng, Cyrus Tang Center for Sensor Materials and Applications, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, People's Republic of China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号