...
首页> 外文期刊>Applied Physics >Semiconducting large bandgap oxides as potential thermoelectric materials for high-temperature power generation?
【24h】

Semiconducting large bandgap oxides as potential thermoelectric materials for high-temperature power generation?

机译:半导体大带隙氧化物可作为高温发电的潜在热电材料?

获取原文
获取原文并翻译 | 示例

摘要

Semiconducting large bandgap oxides are considered as interesting candidates for high-temperature thermoelectric power generation (700-1,200 ℃) due to their stability, lack of toxicity and low cost, but so far they have not reached sufficient performance for extended application. In this review, we summarize recent progress on thermoelectric oxides, analyze concepts for tuning semiconductor thermoelectric properties with view of their applicability to oxides and determine key drivers and limitations for electrical and thermal transport properties in oxides based on our own experimental work and literature results. For our experimental assessment, we have selected representative multicomponent oxides that range from materials with highly symmetric crystal structure (SrTiO_3 perovskite) over oxides with large densities of planar crys-tallographic defects (Ti_nO_(2n-1) Magneli phases with a single type of shear plane, NbO_x block structures with intersecting shear planes and WO_(3-x) with more defective block and channel structures) to layered superstructures (Ca_3Co_4O_9 and double perovskites) and also include a wide range of their composites with a variety of second phases. Crystal-lographic or microstructural features of these oxides are in 0.3-2 nm size range, so that oxide phonons can efficiently interact with them. We explore in our experiments the effects of doping, grain size, crystallographic defects, superstructures, second phases, texturing and (to a limited extend) processing on electric conductivity, Seebeck coefficient, thermal conductivity and figure of merit. Jonker and lattice-versus-electrical conductivity plots are used to compare specific materials and material families and extract levers for future improvement of oxide thermoelectrics. We show in our work that oxygen vacancy doping (reduction) is a more powerful driver for improving the power factor for SrTiO_3, TiO_2 and NbO_x than heterovalent doping. Based on our Seebeck-conductivity plots, we derived a set of highest achievable power factors. We met these best values in our own experiments for our titanium oxide- and niobium oxide-based materials. For strontium titanate-based materials, the estimated highest power factor was not reached; further material improvement is possible and can be reached for materials with higher carrier densities. Our results show that periodic crystallographic defects and superstructures are most efficient in reducing the lattice thermal conductivity in oxides, followed by hetero- and homovalent doping. Due to the small phonon mean free path in oxides, grain boundary scattering in nanoceramics or materials with nanodisper-sions is much less efficient. We investigated the impact of texturing in Ca_3Co_4O_9 ceramics on thermoelectric performance; we did not find any improvement in the overall in-plane performance of a textured ceramic compared to the corresponding random ceramic.
机译:半导体大带隙氧化物由于其稳定性,毒性和低成本而被认为是高温热电发电(700-1,200℃)的有趣候选物,但到目前为止,它们还没有达到扩展应用的足够性能。在这篇综述中,我们总结了热电氧化物的最新进展,根据其对氧化物的适用性,分析了调节半导体热电性能的概念,并根据我们自己的实验工作和文献结果确定了氧化物的电和热传输性能的关键驱动因素和局限性。为了进行实验评估,我们选择了具有代表性的多组分氧化物,其氧化物具有高对称晶体结构的材料(SrTiO_3钙钛矿),而不是具有大密度平面晶状缺陷的氧化物(Ti_nO_(2n-1)具有单一剪切类型的马涅利相)平面,具有相交的剪切平面的NbO_x块状结构和具有更多缺陷的块状和通道结构的WO_(3-x))到层状上层结构(Ca_3Co_4O_9和双重钙钛矿),还包括各种具有多种第二相的复合材料。这些氧化物的晶体学或微观结构特征在0.3-2 nm的尺寸范围内,因此氧化物声子可以与它们有效地相互作用。我们在实验中探索掺杂,晶粒尺寸,晶体缺陷,超结构,第二相,织构化和(在一定程度上)加工对电导率,塞贝克系数,热导率和品质因数的影响。鸡场和晶格对电导率图用于比较特定的材料和材料族,并提取杠杆以进一步改善氧化物热电学。我们在工作中表明,氧空位掺杂(还原)是比异价掺杂更有效地提高SrTiO_3,TiO_2和NbO_x功率因数的驱动力。根据我们的塞贝克电导率图,我们得出了一组最高可达到的功率因数。在我们自己的基于氧化钛和氧化铌的材料的实验中,我们达到了这些最​​佳值。对于钛酸锶基材料,未达到估计的最高功率因数。进一步的材料改进是可能的,并且对于具有更高载流子密度的材料可以达到。我们的结果表明,周期性的晶体学缺陷和上部结构最有效地降低了氧化物的晶格热导率,随后进行了异价和均价掺杂。由于氧化物中的声子平均自由程较小,因此纳米陶瓷或具有纳米分散材料的材料中的晶界散射效率要低得多。我们研究了Ca_3Co_4O_9陶瓷中织构化对热电性能的影响。与相应的随机陶瓷相比,我们发现纹理陶瓷的整体面内性能没有任何改善。

著录项

  • 来源
    《Applied Physics》 |2014年第2期|433-470|共38页
  • 作者单位

    Corning Incorporated, Corning, NY 14831, USA;

    Corning Incorporated, Corning, NY 14831, USA;

    Corning Incorporated, Corning, NY 14831, USA;

    Corning Incorporated, Corning, NY 14831, USA;

    Corning Incorporated, Corning, NY 14831, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号