首页> 外文期刊>Applied physics >Cavity QED based on room temperature atoms interacting with a photonic crystal cavity: a feasibility study
【24h】

Cavity QED based on room temperature atoms interacting with a photonic crystal cavity: a feasibility study

机译:基于室温原子与光子晶体腔相互作用的腔QED:可行性研究

获取原文
获取原文并翻译 | 示例
           

摘要

The paradigm of cavity QED is a two-level emitter interacting with a high-quality factor single-mode optical resonator. The hybridization of the emitter and photon wave functions mandates large vacuum Rabi frequencies and long coherence times; features that so far have been successfully realized with trapped cold atoms and ions, and localized solid-state quantum emitters such as superconducting circuits, quantum dots, and color centers Reiserer and Rempe (Rev Modern Phys 87:1379, 2015), Faraon et al. (Phys Rev 81:033838, 2010). Thermal atoms, on the other hand, provide us with a dense emitter ensemble and in comparison to the cold systems are more compatible with integration, hence enabling large-scale quantum systems. However, their thermal motion and large transit-time broadening is a major bottleneck that has to be circumvented. A promising remedy could benefit from the highly controllable and tunable electromagnetic fields of a nano-photonic cavity with strong local electric-field enhancements. Utilizing this feature, here we investigate the interaction between fast moving thermal atoms and a nano-beam photonic crystal cavity (PCC) with large quality factor and small mode volume. Through fully quantum mechanical calculations, including Casimir-Polder potential (i.e. the effect of the surface on radiation properties of an atom), we show, when designed properly, the achievable coupling between the flying atom and the cavity photon would be strong enough to lead to quantum interference effects in spite of short interaction times. In addition, the time-resolved detection of different trajectories can be used to identify single and multiple atom counts. This probabilistic approach will find applications in cavity QED studies in dense atomic media and paves the way towards realizing large-scale, room-temperature macroscopic quantum systems aimed at out of the lab quantum devices.
机译:腔QED的范例是与高品质因数单模光学谐振器相互作用的两级发射极。发射器和光子波函数的混合要求较大的真空拉比频率和较长的相干时间。迄今为止,已经成功地利用俘获的冷原子和离子以及局部固态量子发射器(如超导电路,量子点和色心Reiserer和Rempe)成功实现了这些功能(Rever Phys 87:1379,2015),Faraon等。 (Phys Rev 81:033838,2010)。另一方面,热原子为我们提供了密集的发射极集合,与冷系统相比,它们与积分更兼容,因此可以实现大规模的量子系统。但是,它们的热运动和较大的传播时间展宽是必须克服的主要瓶颈。一种有前途的补救措施可以受益于具有强大的局部电场增强能力的纳米光子腔的高度可控和可调谐的电磁场。利用此功能,在这里我们研究快速移动的热原子与具有大品质因数和小模式体积的纳米束光子晶体腔(PCC)之间的相互作用。通过充分的量子力学计算,包括Casimir-Polder势(即表面对原子辐射特性的影响),我们表明,如果设计适当,则飞行原子与空腔光子之间可实现的耦合将足够强,从而导致尽管相互作用时间短,但仍然受到量子干扰的影响。另外,不同轨迹的时间分辨检测可用于识别单个和多个原子计数。这种概率方法将在稠密原子介质中的腔体QED研究中找到应用,并为实现针对实验室外量子装置的大规模室温宏观量子系统铺平道路。

著录项

  • 来源
    《Applied physics》 |2020年第2期|25.1-25.10|共10页
  • 作者单位

    Univ Stuttgart Phys Inst 5 Pfaffenwaldring 57 D-70569 Stuttgart Germany|Ctr Integrated Quantum Sci & Technol IQST Ulm Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号