...
首页> 外文期刊>Applied physics >Optimal strategy for trapping single fluorescent molecules in solution using the ABEL trap
【24h】

Optimal strategy for trapping single fluorescent molecules in solution using the ABEL trap

机译:使用ABEL阱捕获溶液中单个荧光分子的最佳策略

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Trapping of 10-nm-sized single fluorescent bio-molecules in solution has been achieved using high-speed position sensing and electrokinetic feedback forces in the Anti-Brownian ELectrokinetic (ABEL) trap. The high diffusion coefficient of small objects in solution requires very fast, real-time sensing of position, and this has been previously achieved using a simple rotating beam, but improved strategies are needed for the smallest objects, such as single nanometer-sized fluorescent molecules. At the same time, single molecules are limited in photon emission rate and total number of photons, so each emitted photon must be used as efficiently as possible. We describe a new controller design for the ABEL trap which features fast, knight's tour scanning of an excitation beam on a 2D square lattice and a Kalman filter-based estimator for optimal position sensing. This strategy leads directly to a maximum-likelihood-based method to extract the diffusion coefficient of the object held in the trap. The effectiveness of the algorithms are demonstrated and compared to the simple rotating beam design through Monte Carlo simulations. Our new approach yields tighter trapping and a much improved ability to extract diffusion coefficients.
机译:使用反布朗电动(ABEL)阱中的高速位置感应和电动反馈力已实现了在溶液中捕集10 nm大小的单个荧光生物分子。溶液中小物体的高扩散系数需要非常快速,实时的位置感测,而以前已经使用简单的旋转光束实现了这一点,但是对于最小的物体,例如单个纳米尺寸的荧光分子,则需要改进的策略。同时,单个分子的光子发射速率和光子总数受到限制,因此必须尽可能高效地使用每个发射的光子。我们描述了一种用于ABEL陷波器的新型控制器设计,该特征具有对二维方格上的激发光束进行快速的骑士巡回扫描以及基于卡尔曼滤波器的估计器,以实现最佳位置感测。这种策略直接导致了基于最大似然法的方法来提取陷井中物体的扩散系数。演示了算法的有效性,并通过蒙特卡洛模拟将其与简单的旋转梁设计进行了比较。我们的新方法可产生更紧密的陷获并大大提高了提取扩散系数的能力。

著录项

  • 来源
    《Applied physics》 |2010年第2期|p.23-30|共8页
  • 作者

    Q. Wang; W.E. Moerner;

  • 作者单位

    Departments of Electrical Engineering and Chemistry, Stanford University, Stanford, CA 94305, USA;

    Departments of Chemistry and Applied Physics, Stanford University, Stanford, CA 94305, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号