首页> 外文期刊>Applied Physics Letters >Synthesis and thermochemical redox cycling of porous ceria microspheres for renewable fuels production from solar-aided water-splitting and CO_2 utilization
【24h】

Synthesis and thermochemical redox cycling of porous ceria microspheres for renewable fuels production from solar-aided water-splitting and CO_2 utilization

机译:用于可再生燃料的多孔二氧化铈微球的合成与热化学氧化还原循环从太阳能辅助水分裂和CO_2利用产生

获取原文
获取原文并翻译 | 示例
           

摘要

Porous ceria-based architected materials offer high potential for solar fuels production via thermochemical H_2O and CO_2-splitting cycles. Novel porous morphologies and micro-scale architectures of redox materials are desired to provide suitable thermochemical activities and long-term stability. Considering particle-based solar reactors, porous ceria microspheres are promising because of their excellent flowability and large surface area. In this work, such porous microspheres with perfect spherical shape, high density, and interconnected pore network were fabricated by a chemical route involving ion-exchange resins. The method involved the cationic loading of the resin in an aqueous medium followed by thermal treatment for oxide formation and porous microstructure stabilization. The utilization of these microspheres (~150-350 μm in size) as redox materials for solar fuel production was investigated in packed-bed solar reactors (directly and indirectly irra-diated). Superior redox performance was obtained for the pure ceria microspheres in comparison with other morphologies (powders and reticulated foams). Low p_(O2) values thermodynamically favored the reduction extent and associated fuel yield, whereas high p_(CO2) kinetically promoted the oxidation rate. The highest fuel production rate reached 1.8mL/min/g with reduction step at 1400 °C, low total pressure (~0.1 bar), and oxidation step below 1050 °C under pure CO_2. Low pressure during reduction both improved reduction extent (oxygen under-stoichiometry S up to 0.052) and associated fuel production yield (331 /rniol/g CO). After 19 redox cycles (~32 h under high-flux solar irradiation), the porous microspheres maintained their individual integrity (no agglomeration), spherical shape, and internal porosity, with great potential for stable fuel production capacity in particle-based solar reactors.
机译:基于多孔的Ceria的架构材料可通过热化学H_2O和CO_2分裂循环提供高潜力的太阳能燃料生产。需要新型多孔形态和微级施工氧化还原材料的施工,以提供合适的热化学活性和长期稳定性。考虑到基于颗粒的太阳能反应器,多孔二孔微球由于其优异的流动性和大表面积而令人无希望。在这项工作中,通过涉及离子交换树脂的化学路线制造具有完美球形,高密度和相互连接的孔网络的这种多孔微球。该方法涉及水性介质中树脂的阳离子加载,然后进行氧化物形成和多孔微观结构稳定化。在填充床太阳能反应器中研究了这些微球(尺寸〜150-350μm的尺寸)(〜150-350μm)作为太阳能燃料生产的氧化还原材料(直接和间接的Irnaiated)。与其他形态(粉末和网状泡沫)相比,获得了纯二氧化铈微球的卓越氧化还原性能。低P_(O2)值热力学上最有利于减少减少和相关的燃料产量,而高P_(CO2)动力学促进氧化率。最高燃料生产速率达到1.8ml / min / g,减少步骤1400°C,总压力(〜0.1巴),低于1050℃以下的氧化步骤在纯CO_2下。减少期间的低压既有改善的还原范围(氧气下的化学计量型高达0.052),也有相关的燃料产量(331 / rniol / g CO)。在19次氧化还原循环(在高通量太阳照射下〜32小时)后,多孔微球保持各自的完整性(无附聚),球形形状和内部孔隙率,具有较大的颗粒太阳能反应器中稳定燃料生产能力的潜力。

著录项

  • 来源
    《Applied Physics Letters》 |2021年第2期|023902.1-023902.7|共7页
  • 作者单位

    Processes Materials and Solar Energy Laboratory CNRS-PROMES 7 Ruedu FourSolaire 66120 Font-Romeu France;

    Processes Materials and Solar Energy Laboratory CNRS-PROMES 7 Ruedu FourSolaire 66120 Font-Romeu France;

    Institut Europeen des Membranes IEM UMR-5635 ENSCM CNRS Univ Montpellier Place Eugene Bataillon 34095 Montpellier Cedex 5 France;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号