首页> 外文期刊>Applied Physics Letters >A fast and large bandwidth superconducting variable coupler
【24h】

A fast and large bandwidth superconducting variable coupler

机译:快速和大带宽超导变量耦合器

获取原文
获取原文并翻译 | 示例
       

摘要

Variable microwave-frequency couplers are highly useful components in classical communication systems and likely will play an important role in quantum communication applications. Conventional semiconductor-based microwave couplers have been used with superconducting quantum circuits, enabling, for example, the in situ measurements of multiple devices via a common readout chain. However, the semiconducting elements are lossy and furthermore dissipate energy when switched, making them unsuitable for cryogenic applications requiring rapid, repeated switching. Superconducting Josephson junction-based couplers can be designed for dissipation-free operation with fast switching and are easily integrated with superconducting quantum circuits. These enable on-chip, quantum-coherent routing of microwave photons, providing an appealing alternative to semiconductor switches. Here, we present and characterize a chip-based broadband microwave variable coupler, tunable over 4-8 GHz with over 1.5 GHz instantaneous bandwidth, based on the superconducting quantum interference device with two parallel Josephson junctions. The coupler is dissipation-free and features large on-off ratios in excess of 40 dB, and the coupling can be changed in about 10 ns. The simple design presented here can be readily integrated with superconducting qubit circuits and can be easily generalized to realize a four- or more port device.
机译:可变微波频率耦合器在经典通信系统中是高度有用的组件,并且可能会在量子通信应用中发挥重要作用。传统的基于半导体的微波耦合器已经与超导量子电路一起使用,例如,通过公共读出链实现多个设备的原位测量。然而,半导体元件是有损的,并且在切换时,进一步耗散能量,使得它们不适合需要快速,重复切换的低温应用。基于超导的Josephson结基耦合器可以设计用于快速切换的无耗散操作,并且易于与超导量子电路集成。这些使片上的微波光子的量子相干路由能够提供对半导体开关的吸引力替代。在这里,我们呈现并表征基于芯片的宽带微波可变耦合器,可根据具有超过1.5GHz瞬时带宽的4-8GHz调谐,基于具有两个平行的Josephson结的超导量子干扰装置。耦合器不易耗散,并且具有超过40dB的大的开关比率,并且可以在大约10ns中改变耦合。这里呈现的简单设计可以容易地与超导量电路集成,并且可以容易地广泛地实现四个或更多个端口设备。

著录项

  • 来源
    《Applied Physics Letters》 |2020年第24期|244001.1-244001.5|共5页
  • 作者单位

    Pritzker School of Molecular Engineering University of Chicago Chicago Illinois 60637 USA;

    Pritzker School of Molecular Engineering University of Chicago Chicago Illinois 60637 USA Department of Physics University of California Santa Barbara California 93106 USA Google Santa Barbara CA 93117 USA;

    Pritzker School of Molecular Engineering University of Chicago Chicago Illinois 60637 USA;

    Pritzker School of Molecular Engineering University of Chicago Chicago Illinois 60637 USA Universite de Lyon ENS de Lyon Universite Claude Bernard CNRS Laboratoire de Physique F-69342 Lyon France;

    Pritzker School of Molecular Engineering University of Chicago Chicago Illinois 60637 USA Department of Physics University of Chicago Chicago Illinois 60637 USA;

    Pritzker School of Molecular Engineering University of Chicago Chicago Illinois 60637 USA;

    Pritzker School of Molecular Engineering University of Chicago Chicago Illinois 60637 USA Argonne National Laboratory Argonne Illinois 60439 USA Universite Grenoble Alpes CEA INAC-Pheliqs QuantECA 38000 Grenoble France;

    Pritzker School of Molecular Engineering University of Chicago Chicago Illinois 60637 USA;

    Pritzker School of Molecular Engineering University of Chicago Chicago Illinois 60637 USA Department of Physics University of California Santa Barbara California 93106 USA;

    Pritzker School of Molecular Engineering University of Chicago Chicago Illinois 60637 USA Department of Physics University of Chicago Chicago Illinois 60637 USA;

    Pritzker School of Molecular Engineering University of Chicago Chicago Illinois 60637 USA Argonne National Laboratory Argonne Illinois 60439 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 23:01:02

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号