首页> 外文期刊>Applied Physics Letters >High photoconductive gain in a GaAs/PbS heterojunotion based SWIR detector
【24h】

High photoconductive gain in a GaAs/PbS heterojunotion based SWIR detector

机译:基于GaAs / PBS杂生junotion的SWIR探测器的高光电导率

获取原文
获取原文并翻译 | 示例
       

摘要

An internal quantum efficiency (IQE), denned as the electron-hole pair to photon conversion ratio, of ~10 was obtained for an n-GaAs/ p-PbS heterojunction when illuminating the device with short wavelength infrared (SWIR) light in the wavelength range of 1300nm-1500nm. The PbS layer, which was comprised of nano-scale domains (NDs) grown by Chemical Bath Deposition (CBD), was quantum confined to absorb SWIR light. The heterojunction showed tunneling characteristics with a soft breakdown at a relatively low reverse bias (~-1V) and a strong photoconductive response at a negative bias above -1.8 V. The voltage dependent behavior is explained using the band structure of the heterojunction. The high IQE observed in the photoconductive response at -2 V is attributed to a high photoconductive gain of more than 40. This assumption was confirmed by mixed conduction behavior observed in a magnetic field dependence Hall effect measurement. These measurements enabled extracting concentrations and mobilities of both electrons and holes. It was found that the CBD grown p-type PbS NDs layer has a mixed conduction nature due to the high electron-to-hole mobility ratio of more than one order of magnitude. This explains the high photoconductive gain achieved and, thus, the high IQE measured for these devices.
机译:当在波长中照射具有短波长(SWIR)光的器件时,获得作为光子转换比的内部量子效率(IQE)作为光子转换比的电子 - 空穴对转换比为〜10的〜10 1300nm-1500nm的范围。由化学浴沉积(CBD)生长的纳米级结构域(NDS)组成的PBS层被局限于吸收SWIR光。异质结显示出在相对低的反向偏压(〜-1V)处具有软击穿的隧穿特性,并且在高于-1.8V的负偏差处具有强的光电导响应。使用异质结的频带结构来解释电压相关行为。在-2V的光电导响应中观察到的高IQE归因于大于40的光电导增益。通过在磁场依赖霍尔效应测量中观察到的混合传导行为来确认该假设。这些测量能够提取电子和孔的浓度和迁移率。发现CBD种植P型PBS NDS层由于高于一种大于一个级的电子到空穴迁移率而具有混合的传导性。这解释了所实现的高光电导率,因此,测量这些装置的高IQE。

著录项

  • 来源
    《Applied Physics Letters》 |2020年第8期|081107.1-081107.5|共5页
  • 作者单位

    Electro-Optics and Photonics Engineering Department School of Electrical and Computer Engineering Ben-Gurion University of the Negev Be'er-Sheva 8410501 Israel Electrical and Computer Engineering Department School of Electrical and Computer Engineering Ben-Curion University of the Negev Be'er-Sheva 8410501 Israel llse Katz Institute for Nanoscale Science and Technology Ben-Curion University of the Negev 8410501 Be'er-Sheva Israel;

    Electrical and Computer Engineering Department School of Electrical and Computer Engineering Ben-Curion University of the Negev Be'er-Sheva 8410501 Israel llse Katz Institute for Nanoscale Science and Technology Ben-Curion University of the Negev 8410501 Be'er-Sheva Israel;

    llse Katz Institute for Nanoscale Science and Technology Ben-Curion University of the Negev 8410501 Be'er-Sheva Israel Materials Engineering Department Ben-Curion University of the Negev Be'er-Sheva 8410501 Israel;

    Electro-Optics and Photonics Engineering Department School of Electrical and Computer Engineering Ben-Gurion University of the Negev Be'er-Sheva 8410501 Israel Electrical and Computer Engineering Department School of Electrical and Computer Engineering Ben-Curion University of the Negev Be'er-Sheva 8410501 Israel llse Katz Institute for Nanoscale Science and Technology Ben-Curion University of the Negev 8410501 Be'er-Sheva Israel;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 22:18:00

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号