首页> 外文期刊>Applied Physics Letters >Nanoscale capillarity for mitigating gas bubble adhesion on arrayed photoelectrode during photoelectrochemical water splitting
【24h】

Nanoscale capillarity for mitigating gas bubble adhesion on arrayed photoelectrode during photoelectrochemical water splitting

机译:用于在光电子化学水分裂期间排除阵列光电极的缓解气泡粘附的纳米级毛细血管

获取原文
获取原文并翻译 | 示例
       

摘要

One-dimensional (1D) arrayed photoelectrodes usually present superior performance in photoelectrochemical (PEC) water splitting. This superiority is known to be attributed to directional transport of photogenerated charge carriers. Herein, we show that in addition to this intrinsic charge transport property, a 1D arrayed structure introduces nanoscale capillary wetting, which is also believed to contribute to the improved PEC performance. Our theoretical model predicts that this morphology-dependent capillarity leads to the formation of a liquid film between the photoelectrode surface and the adhered bubble (the generated H-2/O-2 bubble), thus largely reducing the blockage of active sites at the bubble base. This prediction has been experimentally demonstrated by taking arrayed TiO2 nanorods as a model photoelectrode, with the observation of the PEC activity within the bubble base. This work extends our knowledge toward hydrodynamic functionality involved in morphology-controlled photoelectrodes for enhanced PEC performance.
机译:一维(1D)阵列光电图通常在光电化学(PEC)水分裂中具有优异的性能。已知这种优越性归因于光生电电荷载体的方向传输。在此,我们表明,除了这种固有电荷输送性质之外,1D阵列结构还引入了纳米级毛细血管润湿,这也被认为有助于改善的PEC性能。我们的理论模型预测,这种形态依赖性毛细血管性导致光电子表面和粘附气泡之间的液体膜(所产生的H-2 / O-2泡沫),从而大大降低了气泡处的活性位点的堵塞根据。通过将阵列的TiO2纳米棒作为模型光电极来实验证明了该预测,观察了气泡基底内的PEC活性。这项工作将我们的知识扩展了与形态控制的光电图中涉及的流体动力功能,以提高PEC性能。

著录项

  • 来源
    《Applied Physics Letters》 |2019年第23期|231604.1-231604.5|共5页
  • 作者

    Chen Juanwen; Guo Liejin;

  • 作者单位

    Xi An Jiao Tong Univ State Key Lab Multiphase Flow Power Engn Xian 710049 Shaanxi Peoples R China;

    Xi An Jiao Tong Univ State Key Lab Multiphase Flow Power Engn Xian 710049 Shaanxi Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 22:17:46

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号