首页> 外文期刊>Applied Physics Letters >Response to 'Comment on 'Metastable state in a shape-anisotropic single-domain nanomagnet subjected to spin-transfer-torque'' [Appl. Phys. Lett. 105,116101 (2014)]
【24h】

Response to 'Comment on 'Metastable state in a shape-anisotropic single-domain nanomagnet subjected to spin-transfer-torque'' [Appl. Phys. Lett. 105,116101 (2014)]

机译:在自旋转移转矩作用下的形状各向异性单域纳米磁体中对“亚稳态”的评论的响应[Appl。物理来吧105,116101(2014)]

获取原文
获取原文并翻译 | 示例
       

摘要

In a preceding Comment, Bazaliy argued that the metastable states discussed in our Letter are always unstable and thus irrelevant. This is not correct. In a shape-anisotropic single-domain nanomagnet, there are two degenerate stable states (potential minima) separated by an energy barrier. In the absence of switching current (i.e., no spin-transfer-torque), magnetization is stable only at these two energy minima. Thus, magnetization will relax to either of these two states from any other position (whether that is potential energy maxima or not). In our Letter, we have demonstrated by solving stochastic Landau-Lifshitz-Gilbert (LLG) equation considering thermal fluctuations that magnetization may get stuck at some metastable states corresponding to certain switching currents, and if it gets stuck, it cannot be unstuck by room-temperature thermal perturbations. Different initial values (both for polar angle θ and azimuthal angle (φ) are chosen and it is shown that still the metastable states do appear, but in different current ranges (supplementary Figs. S5-S7 in Ref. 2). Simulation for a long time (500 ns) at higher temperature (400 K) could not also make these metastable states disappear (supplementary Fig. S8 in Ref. 2). Also, the choice of substantially different aspect ratio of the elliptical cross-section of the nanomagnet could not eradicate the metastable states (supplementary Fig. S10 in Ref. 2). Hence, these metastable states are stable against thermal fluctuations.
机译:Bazaliy在先前的评论中认为,我们信中讨论的亚稳态始终是不稳定的,因此是无关紧要的。这是不正确的。在形状各向异性的单畴纳米磁体中,存在两个由能垒隔开的简并稳态(势极)。在没有开关电流的情况下(即没有自旋转移转矩),磁化仅在这两个能量最小值处稳定。因此,磁化强度将从任何其他位置(无论是否为势能最大值)松弛到这两个状态中的任何一个。在我们的信中,我们已经解决了考虑热涨落的随机Landau-Lifshitz-Gilbert(LLG)方程,证明了磁化强度可能会停留在与某些开关电流相对应的某些亚稳状态,并且如果被阻塞,则不能被房间温度热扰动。选择了不同的初始值(极角θ和方位角(φ)都选择了),这表明仍然出现了亚稳态,但是处于不同的电流范围内(参考文献2中的辅助图S5-S7)。在较高的温度(400 K)下长时间(500 ns)也不能使这些亚稳态消失(参考文献2中的补充图S8),并且,选择纳米磁体的椭圆形横截面的纵横比大不相同。不能消除亚稳态(参考文献2中的补充图S10),因此,这些亚稳态对于热波动是稳定的。

著录项

  • 来源
    《Applied Physics Letters》 |2014年第11期|116102.1-116102.2|共2页
  • 作者

    Kuntal Roy;

  • 作者单位

    Department of Electrical and Computer Engineering, Virginia Commonwealth University,Richmond, Virginia 23284, USA Department of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:15:59

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号