首页> 外文期刊>Applied Physics Letters >Mesoscopic harmonic mapping of electromechanical response in a relaxor ferroelectric
【24h】

Mesoscopic harmonic mapping of electromechanical response in a relaxor ferroelectric

机译:弛豫铁电体中机电响应的介观谐波映射

获取原文
获取原文并翻译 | 示例
       

摘要

Relaxor-ferroelectrics are renowned for very large electrostrictive response, enabling applications in transducers, actuators, and energy harvesters. However, insight into the dissimilar contributions (polarization rotation, wall motion) to the electromechanical response from electrostrictive strain, and separation of such contributions from linear piezoelectric response are largely ignored at the mesoscale. Here, we employ a band-excitation piezoresponse force microscopy (BE-PFM) technique to explore the first and second harmonics of the piezoelectric response in prototypical relaxor-ferroelectric 0.72Pb(Mg_(1/3)Nb_(2/3))O_3-0.28PbTiO_3 (PMN-0.28PT) single crystals. Third order polynomial fitting of the second harmonic reveals considerable correlation between the cubic coefficient map and the first harmonic piezoresponse amplitude. These results are interpreted under a modified Rayleigh framework, as evidence for domain wall contributions to enhanced electromechanical response. These studies highlight the contribution of domain wall motion in the electromechanical response of relaxor ferroelectrics, and further show the utility of harmonic BE-PFM measurements in spatially mapping the mesoscopic variability inherent in disordered systems.
机译:弛张铁电体以超大的电致伸缩响应而闻名,可用于换能器,执行器和能量收集器中。然而,在中尺度上,对于电致伸缩应变对机电响应的不同贡献(极化旋转,壁运动)以及将这些贡献与线性压电响应分离的见解在很大程度上被忽略了。在这里,我们采用带激励压电响应力显微镜(BE-PFM)技术来探索典型松弛铁电0.72Pb(Mg_(1/3)Nb_(2/3))O_3中压电响应的一次和二次谐波。 -0.28PbTiO_3(PMN-0.28PT)单晶。二次谐波的三阶多项式拟合揭示了三次系数图和一次谐波压电响应幅度之间的显着相关性。这些结果在修改后的瑞利框架下进行解释,作为畴壁对增强机电响应的贡献的证据。这些研究突出了畴壁运动在弛豫铁电体的机电响应中的作用,并进一步表明谐波BE-PFM测量在空间映射无序系统中固有的介观可变性方面的实用性。

著录项

  • 来源
    《Applied Physics Letters》 |2015年第22期|222901.1-222901.5|共5页
  • 作者单位

    Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA and Institute for Functional Imaging of Materials, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA;

    Department of Materials Science and Engineering, Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, USA;

    School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA;

    Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA and Institute for Functional Imaging of Materials, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA;

    Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA and Institute for Functional Imaging of Materials, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA;

    Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA and Institute for Functional Imaging of Materials, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA;

    School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA,G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:15:09

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号