首页> 外文期刊>Applied Physics Letters >Is spin transport through molecules really occurring in organic spin valves? A combined magnetoresistance and inelastic electron tunnelling spectroscopy study
【24h】

Is spin transport through molecules really occurring in organic spin valves? A combined magnetoresistance and inelastic electron tunnelling spectroscopy study

机译:通过分子的自旋传输真的发生在有机自旋阀中吗?磁阻和非弹性电子隧穿光谱的组合研究

获取原文
获取原文并翻译 | 示例
       

摘要

Molecular and organic spintronics is an emerging research field which combines the versatility of chemistry with the non-volatility of spintronics. Organic materials have already proved their potential as tunnel barriers (TBs) or spacers in spintronics devices showing sizable spin valve like magnetoresistance effects. In the last years, a large effort has been focused on the optimization of these organic spintronics devices. Insertion of a thin inorganic tunnel barrier (Al_2O_3 or MgO) at the bottom ferromagnetic metal (FM)/organic interface seems to improve the spin transport efficiency. However, during the top FM electrode deposition, metal atoms are prone to diffuse through the organic layer and potentially short-circuit it. This may lead to the formation of a working but unde-sired FM/TB/FM magnetic tunnel junction where the organic plays no role. Indeed, establishing a protocol to demonstrate the effective spin dependent transport through the organic layer remains a key issue. Here, we focus on Co/Al_2O_3/Alq_3/Co junctions and show that combining magnetoresistance and inelastic electron tunnelling spectroscopy measurements one can sort out working "organic" and short-circuited junctions fabricated on the same wafer.
机译:分子和有机自旋电子学是一个新兴的研究领域,它将化学的多功能性与自旋电子学的非挥发性结合在一起。有机材料已被证明具有潜在的自旋电子器件中的隧道势垒(TB)或隔离层的作用,并显示出类似磁阻效应的自旋阀。在过去的几年中,人们一直致力于优化这些有机自旋电子器件。在底部铁磁金属(FM)/有机界面处插入薄的无机隧道势垒(Al_2O_3或MgO)似乎可以提高自旋传输效率。但是,在顶部FM电极沉积过程中,金属原子易于扩散通过有机层,并可能使其短路。这可能会导致形成有效的但不希望使用的FM / TB / FM磁性隧道结,其中有机物不起作用。实际上,建立协议以证明通过有机层的有效自旋依赖性转运仍然是关键问题。在这里,我们重点研究Co / Al_2O_3 / Alq_3 / Co结,并表明结合磁阻和非弹性电子隧穿光谱测量可以区分在同一晶片上制造的“有机”结和短路结。

著录项

  • 来源
    《Applied Physics Letters》 |2015年第8期|082408.1-082408.4|共4页
  • 作者单位

    Unite Mixte de Physique CNRS/Thales, 1 Av. A. Fresnel, 91767 Palaiseau, France and Universite Paris-Sud, 91405 Orsay, France;

    Unite Mixte de Physique CNRS/Thales, 1 Av. A. Fresnel, 91767 Palaiseau, France and Universite Paris-Sud, 91405 Orsay, France;

    Unite Mixte de Physique CNRS/Thales, 1 Av. A. Fresnel, 91767 Palaiseau, France and Universite Paris-Sud, 91405 Orsay, France;

    Unite Mixte de Physique CNRS/Thales, 1 Av. A. Fresnel, 91767 Palaiseau, France and Universite Paris-Sud, 91405 Orsay, France;

    Thales Research & Technology, 1 Av. A. Fresnel, 91767 Palaiseau, France;

    Unite Mixte de Physique CNRS/Thales, 1 Av. A. Fresnel, 91767 Palaiseau, France and Universite Paris-Sud, 91405 Orsay, France;

    Unite Mixte de Physique CNRS/Thales, 1 Av. A. Fresnel, 91767 Palaiseau, France and Universite Paris-Sud, 91405 Orsay, France;

    Unite Mixte de Physique CNRS/Thales, 1 Av. A. Fresnel, 91767 Palaiseau, France and Universite Paris-Sud, 91405 Orsay, France;

    Unite Mixte de Physique CNRS/Thales, 1 Av. A. Fresnel, 91767 Palaiseau, France and Universite Paris-Sud, 91405 Orsay, France;

    Unite Mixte de Physique CNRS/Thales, 1 Av. A. Fresnel, 91767 Palaiseau, France and Universite Paris-Sud, 91405 Orsay, France;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:15:03

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号