首页> 外文期刊>Applied Physics Letters >Ultra-fine metal gate operated graphene optical intensity modulator
【24h】

Ultra-fine metal gate operated graphene optical intensity modulator

机译:超细金属栅操作石墨烯光强度调制器

获取原文
获取原文并翻译 | 示例
       

摘要

A graphene based top-gate optical modulator on a standard silicon photonic platform is proposed for the future optical telecommunication networks. On the basis of the device simulation, we proposed that an electro-absorption light modulation can be realized by an ultra-narrow metal top-gate electrode (width less than 400 nm) directly located on the top of a silicon wire waveguide. The designed structure also provides excellent features such as carrier doping and waveguide -planarization free fabrication processes. In terms of the fabrication, we established transferring of a CVD-grown mono-layer graphene sheet onto a CMOS compatible silicon photonic sample followed by a 25-nm thick ALD-grown Al_2O_3 deposition and Source-Gate-Drain electrodes formation. In addition, a pair of low-loss spot-size converter for the input and output area is integrated for the efficient light source coupling. The maximum modulation depth of over 30% (1.2dB) is observed at a device length of 50 μm, and a metal width of 300 nm. The influence of the initial Fermi energy obtained by experiment on the modulation performance is discussed with simulation results.
机译:针对未来的光通信网络,提出了在标准硅光子平台上基于石墨烯的顶栅光调制器。基于器件仿真,我们提出可以通过直接位于硅线波导顶部的超窄金属顶栅电极(宽度小于400 nm)来实现电吸收光调制。设计的结构还具有出色的功能,例如载流子掺杂和无波导平面化的制造工艺。在制造方面,我们建立了将CVD生长的单层石墨烯片转移到CMOS兼容的硅光子样品上的方法,然后进行了25 nm厚的ALD生长的Al_2O_3沉积并形成了源极-栅极-漏极电极。此外,为输入和输出区域集成了一对低损耗点尺寸转换器,以实现高效的光源耦合。在器件长度为50μm,金属宽度为300 nm时,观察到最大调制深度超过30%(1.2dB)。仿真结果讨论了实验获得的初始费米能量对调制性能的影响。

著录项

  • 来源
    《Applied Physics Letters》 |2016年第25期|251101.1-251101.5|共5页
  • 作者单位

    NTT Nanophotonics Center, NTT Corporation, Atsugi, Kanagawa 243-0198, Japan,NTT Device Technology Laboratories, NTT Corporation, Atsugi, Kanagawa 243-0198, Japan,University of California Berkeley, Berkeley, California 94720, USA;

    Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku, Tokyo 169-8555, Japan;

    NTT Nanophotonics Center, NTT Corporation, Atsugi, Kanagawa 243-0198, Japan,NTT Device Technology Laboratories, NTT Corporation, Atsugi, Kanagawa 243-0198, Japan;

    Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku, Tokyo 169-8555, Japan,Corporate Research and Development Center, Toshiba Corporation, Kawasaki, Kanagawa 212-8582, Japan;

    Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku, Tokyo 169-8555, Japan;

    NTT Basic Research Laboratories, NTT Corporation, Atsugi, Kanagawa 243-0198, Japan,Global Innovation Center, Kyushu University, Kasuga, Fukuoka 816-8580, Japan;

    NTT Basic Research Laboratories, NTT Corporation, Atsugi, Kanagawa 243-0198, Japan,Department of Nanotechnology for Sustainable Energy, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan;

    NTT Device Technology Laboratories, NTT Corporation, Atsugi, Kanagawa 243-0198, Japan;

    Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku, Tokyo 169-8555, Japan;

    NTT Nanophotonics Center, NTT Corporation, Atsugi, Kanagawa 243-0198, Japan,NTT Device Technology Laboratories, NTT Corporation, Atsugi, Kanagawa 243-0198, Japan,National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8569, Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:14:57

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号